

INTERNET TECHNOLOGIES

FOR BUSINESS

Contribuția autorilor la realizarea lucrării a fost următoarea / The authors

contributions:

Prof. dr. Vasile Avram: capitol 1, 2, 3, capitol 4 paragrafele 4.1,4.2, 4.3.1,

4.3.2, 4.3.4, 4.5, 4.6.1, 4.7 capitol 6

Lect. dr. Dragoș-Marcel Vespan: capitol 5 paragrafele 5.1, 5.2, 5.4, 5.5, 5.6

Diana Avram: capitol 4 paragrafele 4.3.2.2, 4.3.3, 4.4, 4.6.2, 4.6.3, capitol 7

Prep. drd. Alina-Mihaela Ion: capitol 5 paragrafele 5.3, 5.7

ACADEMIA DE STUDII ECONOMICE BUCUREȘTI

Prof. dr. Vasile AVRAM

coordonator

Lect. dr. Dragoș-Marcel Vespan Diana Avram

Prep. drd. Mihaela-Alina Ion

INTERNET TECHNOLOGIES

FOR BUSINESS

Editura ASE

București

2009

Preface

 Internet Technologies for Business has the goal of

introducing and educating students in basic aspects of web

organization and technologies. To achieve this goal, the text

emphasizes subject matter organization and an interactive

approach to generating student interest.

 The text views web system as multilevel entity encompassing

hardware, software systems, procedures, human elements, and

organizational/societal impacts. The beginner student in internet

technologies needs to gain knowledge of each of these levels

trough a balanced approach, in which no level is receiving too

little or too much emphasis. This text is carefully organized to

achieve such a balance.

Chapter I is an introduction of various aspects of computer

networks as foundations for the network of networks that is

Internet. It introduces aspects regarding hardware components,

topologies, protocols and standards, and interconnecting aspects.

Chapter II gives a closer look to Internet architecture,

communication protocols and their position at web server side

and/or client level together with an introduction in web pages,

browsers and search engines.

Chapter III investigate the concepts and definitions used by

Internet in relationship with business together with a description of

business models and different point of views of classification of

these.

Chapter IV is an investigation and classification of sites

architectures together with and introduction to the required web

technologies.

Chapter V is an extended presentation of the HTML language

since this is the basic language designated to describe the web

resources at client level (for their browser) and the almost

technologies used to manipulate and generate answers to user

requests uses this language as final end.

Chapter VI is an extended presentation of VBScript, as proprietary

and platform dependent scripting language, for his client side

scripting. It contains commented samples for the introduced

notions the samples being those given for the Visual Basic to the

course General Informatics and realized as VBScript solution to

easy the understanding.

Chapter VII is an extended introduction to JavaScript as a

platform independent scripting language together with commented

samples for the introduced notions.

The student needs are not only to learn facts but also to

work with them in an – describing, scripting, answering,

evaluating, comparing – continuously process. Information should

not just flow from instructor and text to student, but in other

directions as well – from student to student, and from student to

instructor.

The Authors

 7

Contents

1 INTRODUCTION TO COMPUTER NETWORKS ………......

1.1 LAN's & WAN's ………………………………………………...

1.2 Some network and internetwork components …………………...

File Server ……………………………………………….......

Workstation .…………………………………………………

Topologies and Protocol ………………………………….....

Repeaters …………………………………………………….

Hubs (concentrators) ………………………………………...

Bridges ……………………………………………….….......

Switches ……………………………………………………..

Routers ………………………………………………………

Gateways …………………………………………………….

1.3 The communication process …………………………………….

1.4 Communication medium ………………………………………...

1.5 Topologies and networks ………………………………………..

Linear (bus) topology ……………………………………….

Distributed Star Topology …………………………………..

Logical Ring Topology ……………………………………...

FDDI networks ………………………………………………

Complex LANs ……………………………………………...

Wide Area Network topologies ……………………………..

Storage Area Network ………………………………………

Wireless LAN (WLAN) …………………………………….

1.6 Cooperative processing …………………………………………

Client-Server ………………………………………………..

Peer-to-Peer …………………………………………………

1.7 Communication models …………………………………………

OSI MODEL ………………………………………………..

IEEE MODEL ………………………………………………

1.8 Communications protocols ……………………………………...

15

15

17

17

18

18

20

20

21

21

22

22

23

26

28

28

29

30

31

31

32

35

35

36

36

37

39

40

44

45

 8

1.9 Standards ………………………………………………………..

Ethernet ……………………………………………………..

Token Ring ………………………………………………….

Asynchronous Transfer Mode (ATM) ………………………

FDDI ………………………………………………………...

Frame Relay …………………………………………………

AppleTalk ……………………………………………………

Arcnet ……………………………………………………….

Zero-Slot LANs ……………………………………………..

1.10 Understanding Internetwork Tools …………………………….

How bridges and routers work ………………………………

Transparent bridge …………………………………………..

Translating bridge …………………………………………...

Source routing bridges ………………………………………

Routers ………………………………………………………

2 Internet - ARCHITECTURE, OFFERED SERVICES,

COMMUNICATION AND NAVIGATION ……………………...

2.1 How WANs (and Internet) are organized ……………………….

Client/Server Technology …………………………………...

2.1.1 The Logical Structure of Web Servers ………………………..

2.1.2 The transport protocols ………………………………………..

2.1.3 The IP addressing ……………………………………………...

2.1.4 The DNS ………………………………………………………

2.1.5 URL ……………………………………………………………

URI - Uniform Resource Identifiers ………………………...

2.2 Service protocols ………………………………………………..

2.2.1 TCP/IP – HTTP ……………………………………………….

2.2.2 SMTP/POP …………………………………………………….

SMTP ………………………………………………………..

POP (Post Office Protocol) ………………………………….

2.2.3 FTP …………………………………………………………….

Using FTP line commands …………………………………..

2.2.4 NNTP ………………………………………………………….

2.2.5 RPC and Multimedia ………………………………………….

2.2.6 Applications gateways ………………………………………...

2.2.7 Applets ………………………………………………………...

2.2.8 Wireless Web ………………………………………………….

2.3 Web pages, sites and Web browsers - an introduction ………….

Web pages and web site - definitions ……………………….

53

53

56

57

58

59

60

60

61

61

61

61

63

64

65

69

69

71

76

85

85

89

91

92

94

94

95

95

97

98

99

101

103

104

107

108

109

109

 9

Web browsers ……………………………………………….

Finding information on the Internet …………………………

2.4 Web services - an introduction ………………………………….

3 BUSINESS CATEGORIES AND MODELS IN Internet ……..

3.1 Business Categories ……………………………………………..

Digital firm ………………………………………………….

Business processes …………………………………………..

Electronic market ……………………………………………

Electronic business (e-business) …………………………….

Electronic commerce (e-commerce) ………………………..

Intranet ………………………………………………………

Extranet ……………………………………………………...

Private industrial network …………………………………...

The e-business - e-commerce relationships …………………

CRM (Customer Relationship Management) ……………….

SCM (Supply Chain Management) …………………………

Business categories ………………………………………….

3.2 Business Models ………………………………………………...

3.2.1 Classification of e-business models …………………………...

3.2.2 Common of Internet e-business models ……………………….

The Merchant ………………………………………………..

Click-and-mortar merchants ………………………………...

Build to order merchants …………………………………….

The service provider …………………………………………

Subscription-based access …………………………………...

Prepaid access ……………………………………………….

The broker …………………………………………………...

The sales representative ……………………………………..

The advertiser ……………………………………………….

Targeted advertising …………………………………………

Updating advertisements …………………………………….

Portal sites …………………………………………………...

Attention/incentive marketing ……………………………….

Free access …………………………………………………..

The auction room ……………………………………………

Open auctions ……………………………………………….

Reverse auctions …………………………………………….

The virtual mall ……………………………………………...

The virtual community ………………………………………

110

111

116

121

121

121

121

121

122

122

123

124

124

125

126

126

127

128

131

133

133

134

134

134

134

134

135

135

136

136

136

137

137

137

137

137

138

138

138

 10

The infomediary (information intermediary) ………………..

3.3 The E-Commerce Development And Functional Architecture ….

The e-commerce/e-business development …………………..

The evolution of e-commerce ……………………………….

The functional architecture for e-commerce ………………...

Internet vulnerabilities and security …………………………

4 DOCUMENTS AND WEB SITES - STRUCTURE,

DESCRIPTION LANGUAGES …………………………………...

4.1 Web Pages and Web Sites ………………………………………..

4.2 Static (HTML) Architecture ……………………………………..

4.3 DHTML Architecture …………………………………………...

4.3.1 CSS - Cascading Style Sheets …………………………………

4.3.2 Scripts ………………………………………………………….

4.3.2.1 DOM - Document Object Model ……………………………

4.3.2.2 JavaScript ……………………………………………………

4.3.2.3 VBScript …………………………………………………….

4.3.3 Flash …………………………………………………………...

4.3.4 Ajax ……………………………………………………………

4.4 High Level Languages based Architecture ……………………...

4.4.1 Java ……………………………………………………………

4.4.2 XML - eXtensible Markup Language …………………………

4.4.2.1 Differences between XML, HTML, and SGML …………….

XML - SGML Comparison ………………………………………….

XML - HTML Comparison ………………………………………….

4.4.2.2 XSL: the formatting language of XML ……………………...

4.4.2.3 XQL - the extended query language ………………………...

4.4.2.4 Database Links ………………………………………………

Structured Data Exchange …………………………………..

Storage of XML documents in databases …………………...

Document Object Model (DOM) ……………………………

Access to DHTML documents ………………………………

4.5 Dynamic Pages Architecture …………………………………….

SSI (Server-Side Include) …………………………………...

ASP - Microsoft - Active Server Pages ……………………..

PHP ………………………………………………………….

4.6 Advanced Management Architecture ……………………………

4.6.1 Statistic utilities ………………………………………………..

4.6.2 Cookie …………………………………………………………

4.6.3 Network traffic analysis ………………………………………..

139

139

139

140

142

145

149

149

151

155

156

159

159

162

166

168

171

174

174

177

180

180

180

180

183

183

„83

183

183

187

187

190

190

191

192

192

194

196

 11

4.7 Multi-tier (three tiers) Architecture ……………………………..

4.7.1 Client-Server Infrastructure …………………………………...

4.7.2 Application Server …………………………………………….

5 DEFINING AND STRUCTURING WEB PAGES USING

HTML ……………………………………………………..

5.1 HTML - An introduction …………………………………….......

5.1.1 The structure of a HTML page ………………………………..

5.1.2 The HTML Page Head Tag ……………………………………

5.2 Text emphasizing elements ……………………………………..

5.2.1 Headings ……………………………………………………….

5.2.2 Spaces ………………………………………………………….

5.2.3 Paragraphs ……………………………………………………..

5.2.4 Preformatted text ……………………………………………..

5.2.5 Character entities ……………………………………………..

5.2.6 Text formatting ……………………………………………….

5.2.7 Horizontal rule ………………………………………………..

5.2.8 Lists ……………………………………………………………

5.3 Hyperlinks and Pictures …………………………………………

5.3.1 Hyperlinks ……………………………………………………..

5.3.2 Images …………………………………………………………

5.4 HTML Elements for Defining Layout of Web Pages …………...

5.4.1 Tables ………………………………………………………….

5.4.2 Horizontal rule ………………………………………………..

5.4.3 Frames …………………………………………………………

5.4.4 Colors ………………………………………………………….

5.5 Styles and CSS …………………………………………………..

5.6 Forms in HTML …………………………………………………

5.7 Differences Between HTML and XHTML ……………………..

6 VBScript …………………………………………………………..

6.1 Introduction ……………………………………………………...

6.2 Using and Pacing VBScripts in a HTML Pge …………………...

6.2.1 VBScript in the body of the HTML file ……………………….

6.2.2 VBScript in heading …………………………………………...

6.2.3 Inline VBScript ………………………………………………..

6.3 Variables and Constants …………………………………………

6.3.1 Variables ………………………………………………………

Arrays ………………………………………………………..

196

197

198

201

201

204

206

207

207

209

209

211

211

212

213

215

217

217

220

223

223

232

235

238

239

248

257

259

259

259

259

260

261

261

261

264

 12

Dynamic Arrays ……………………………………………..

6.3.2 Constants ………………………………………………………

6.4 Assignments and expressions ……………………………………

Assignments …………………………………………………

Expressions ………………………………………………….

6.5 Procedures and functions ………………………………………..

6.6 Decisional (conditional/alternative) statements …………………

If ... Then ... Else …………………………………………….

If ... Then …………………………………………………….

If ... Then ... ElseIf …………………………………………..

Case of ……………………………………………………….

6.7 Repeating Structure ……………………………………………...

Conditional Loop with Condition Evaluated First …………..

Conditional Loop with Condition Evaluated After ………….

Counted Loop ………………………………………………..

For Each ... Next …………………………………………….

6.8 Inserting Objects in HTML pages ……………………………….

6.9 Input Output Operations with InputBox and MsgBox …………..

InputBox ……………………………………………………..

MsgBox ……………………………………………………...

6.10 Combining VBScript and Forms ……………………………….

7 JavaScript ………………………………………………………...

7.1 JavaScript ... An introduction ……………………………………

7.2 Using and placing JavaScripts in a HTML page ………………..

7.2.1 JavaScript in the body of the HTML file ……………………...

7.2.2 JavaScript in heading ………………………………………….

7.2.3 External JavaScripts …………………………………………...

7.3 Defining and using variables ……………………………………

7.4 Methods ………………………………………………………….

7.5 Document Object Model (DOM) ………………………………..

7.6 Using and Defining Function ……………………………………

7.7 Asignments and expressions …………………………………….

7.7.1 Arithmetic Expression …………………………………………

7.7.2 Logical Expression …………………………………………….

7.7.3 String Expression ……………………………………………...

7.8 Conditional Execution …………………………………………...

7.9 Decision sentences ………………………………………………

7.10 Popup Boxes …………………………………………………...

7.11 Cycles …………………………………………………………..

7.12 Using events to trigger script execution ……………………….

267

269

270

270

270

272

273

274

274

275

275

276

276

278

278

282

284

285

285

286

288

291

291

297

297

298

299

299

300

302

304

306

307

308

309

310

310

315

315

319

 13

7.13 Handling errors ………………………………………………...

7.14 Commented samples …………………………………………...

Annexes …………………………………………………………….

Annex 1. List of VBScript intrinsic functions ………………………

Annex 2 VBScript naming conventions ……………………………..

Annex 3 Character sets and RGB color ……………………………..

A. Character entities …………………………………………

B. ISO Latin-1 Character Set ………………………………..

C. Additional Named Entities for HTML …………………...

D. RGB Color codes ………………………………………...

References …………………………………………………………..

322

322

327

327

331

332

332

332

339

344

346

 14

1 INTRODUCTION TO COMPUTER NETWORKS

1.1 LAN's & WAN's

 Any system that requires computers to communicate with each other will

need specialized hardware and software such as:

- modems;

- communication programs: contain standard protocols ensure that systems can

signal to each other the start and finish of transmission and reception and any

other problems experienced with data;

- network cards, network circuits and software.

 "A network is nothing more than two or more computers connected to each

other so that they can exchange information, such as e-mail messages or documents,

or share resources, such as disk storage or printers [Lowe-05]”.

 A network is composed from a hardware part (servers, workstations, cables,

printers and so on) and a software part (operating systems and applications).

 A Local Area Network (LAN) links personal computers (Workstations)

together so they can communicate and share resource, such as hard drives, printers,

application software and data files.

 All networks, even the most complex ones, include the same three

fundamental blocks:

- devices that supplies services to the network;

- devices that uses that offered services;

- “something” that allow to communicate that devices.

 The networks run under an operating system called Network Operating

System (NOS) that must offer at least the following services:

- electronic mail (e-mail);

- sharing application software packages and files;

- central backup of files and application software;

- security;

- communication to remote Workstations (e.g. data can be transferred between

networks; files can be created at a corporate national office and transferred

electronically to each location and printing out), LAN's, and mini/mainframe

connectivity.

Definition of LANs: LANs are networks of computers and peripherals linked

together on a single geographical site. They located generally in one single building or

in a group of buildings positioned on an array whose surface is up to some square

kilometers.

LANs enabled multiple users in a relatively small geographical area to

exchange files and messages, as well as access shared resources such as file servers

and printers.

 16

 In a network context:

 a doctor's office can easily access the records on a poison control database

maintained on a network as close as next door, or halfway around the world;

 a salesman can phone in to the network utilizing a microcomputer equipped with a

modem from a remote location to place orders, for immediate access to inventory

information;

 data can be transferred between networks;

 files can be created at a corporate national office, and transferred electronically to

each location and printed out, especially important when timing is a factor.

 Network components

consist of files, print or

communication server,

Workstations, Network

Interface Cards (NIC),

connectors, cables, wiring

boxes and any other required

hardware for the chosen

topology.

 All Workstations are

connected to a File Server by

intermediate of a network card

and a transmission media

(channel). All computer

networks may consist of one or

more File Servers. Data

communication capabilities are available to allow you to connect to a remote PC, to

another LAN or to a mainframe (figure 1.1)

 The technology has produced a variety of tools to create inter-network

solution. Such tools for connecting networks together include repeaters, bridges,

routers, gateways, and so on.

Advantages of local area network:

- data can be shared by all users;

- the network can gradually extended as organization grows;

- users can share expensive resources such high quality printers;

- if one machine breaks down, the others can continue working;

- cost effective for large numbers of users;

- members of the network can send electronic mail to one another reducing the

amount of paperwork.

Definition of WANs: A series of LANs joined together is often referred as WAN.

WAN is a collection of LANs joined together over a large geographical area (county,

country, region etc). Devices on each LAN communicate over the WAN using direct

network connections or modems where direct connections are not available.

Wide-area networks (WANs) interconnect LANs with geographically

dispersed users to create connectivity. Some of the technologies used for

Figure 1.1 A network example

 17

connecting LANs include T1, T3, ATM (Asynchronous Transfer Mode), ISDN

(Integrated Services Digital Network), ADSL (Asymmetric Digital Subscriber

Line), Frame Relay, radio links, etc.

 A metropolitan area network (MAN) is a network that's smaller than a typical

WAN but larger than a LAN, typically connecting the LANs within a same city.

 A collection of interconnected networks is called an internetwork or internet.

The individual networks are connected by intermediate of networking devices and the

resulting assembly functions as a single large network. Internetworking refers to the

industry, products, and procedures that meet the challenge of creating and

administering internetworks.

1.2 Some network and internetwork components

File Server. A network starts with a server. For PCs networks is usually a high

performance PC which can be installed to function as a file server only (dedicated) or

as a combination File Server or Workstation (nondedicated). File Server means

"serving" files to user’s request. It also handles the sharing of resources (e.g. disk

drivers and printers) and security. Servers uses a Network Operating System (NOS)

that must be enough capable to offer simultaneously services to most clients. The file

server, utilizing NOS acts the same as a network traffic police which controls the

Workstation file requests (reads and writes to network drives), printer output and

communications between users and file servers attached to the network. The

Operating System of the Network can be UNIX (and anyone of his clones, Linux for

instance), MacOS, OS/2, Novell NetWare, IBM LAN Server, Banyan Vines,

Windows NT xx Server, Windows 2003 Server, Windows 2008 Server etc. Network

servers require large storage capacity, fast processors, and ample memory. Server

tower cases also are larger than client computers and provide much more space for

additional hard drives and other peripherals. Generally today medium-sized and

large companies, uses many specialized servers that are organized, for efficiency

reasons, as server blades. Another concept related to servers and used today is

server virtualization or the ability to create a logical abstraction of physical assets

(it allows for multiple “virtual” servers to run on one physical server, thereby

consolidating many physical servers onto one).
A blade server is a server chassis housing multiple thin, modular electronic circuit

boards, known as server blades (see the figures below). Each blade is a server in

its own right, often dedicated to a single application. The blades are literally

servers on a card, containing processors, memory, integrated network controllers,

an optional fiber channel host bus adaptor (HBA) and other input/output (IO)

ports.

A blade server is sometimes referred to as a high-density server and is typically

used in a clustering of servers that are dedicated to a single task, such as:

 File sharing;

 Web page serving and caching;

 SSL encrypting of Web communication;

 The transcoding of Web page content for smaller displays;

 18

 Streaming audio and video content.

Blade servers allow more processing power in less rack space, simplifying cabling

and reducing power consumption. According to a SearchWinSystems.com article

on server technology, enterprises moving to blade servers can experience as much

as an 85% reduction in cabling for blade installations over conventional 1U or

tower servers. With so much less cabling, IT administrators can spend less time

managing the infrastructure and more time ensuring high availability.

(http://itknowledgeexchange.techtarget.com/)

 Examples blade servers from main manufacturers (external

views):

IBM HP Dell
Blade and virtualization technologies together provide critical building

blocks for the today’s enterprise data centers.

Workstation. All microcomputers with at least one disk drive have the possibility to

(the ability to) function in "stand-alone" mode (the operating system and applications

ca be stored and loaded from the disk drive). When they are connected to network,

they become a (Work)station or a Client. A (Work)station can be diskless, or it can

have all CD/DVD, floppy and hard drives. The boot files can be on the floppy, on the

CD/DVD drive, or on the hard disk drive etc. For diskless Workstations can be on the

Programmable Read Only Memory (PROM) on the network interface card. Any

component of a network that uses services offered by a server is called generally

client. The clients use operating systems for workstations. Network clients don't

typically need the processing power and storage capacity required by a server

computer. Network clients do need, however, to be able to properly run the client

operating system they have been configured with.

Network Interface Cards (NICs). A network interface card is a card installed in

the computer that enables it to communicate over a network. The network card can

be installed in an extension slot, can be included in the motherboard design (as a

built-in network port), it can be connected externally to an USB port or by

intermediate of a PCMCIA card. Almost all NICs implement the free patent

networking standard called Ethernet. Every client computer and every server

computer must have at least a network interface card (or a built-in network port) in

order to be able became a part of a network.

 Examples network cards:

1 port PCI network

card 10/100
4 ports PCI network
card 10/100/1000

PCMCIA
network adapter

1 port USB
network adapter

Topologies and Protocol. Computers in a network are usually physically connected

to each other using a communication medium (cable, radio waves, infrared waves,

http://itknowledgeexchange.techtarget.com/

 19

satellite waves etc). The devices connected into the network are referred by the term

node. In order to allow the communication between servers and clients it is needed

“something” to make a link between them. This “something” is called network

environment (or medium), and is represented by topology and protocol. Topology is

the cabling schematic which includes components that make up the design of the

LAN. Just as people speak different languages, so do computers. The languages that

allow computers to talk to another are called protocols. The protocol is the method in

which the network interface cards (NICs) communicate over the topology. From the

NIC point of view the protocols are essentially electronic rules of behavior that allow

them to initiate and maintain communication. These rules are controlled by the

protocol engine that:

 accepts raw data from the sending source;

 assembles and addresses packets;

 attaches any necessary information such as internet routing;

 places the packets onto the cable.

 We can define protocol as “a set of rules that enables effective

communications to occur” or, in other words, “an agreement between

communicating parties on how communication is to proceed”. The message is sent

over the network, from one node to another node, as a sequence of one or many

packets. Generally a packet includes the address of the node that sent (source) the

packet, the address of the node the packet is being sent to (destination), data

(chunks from the original message), and error detection and correction information.

The communication take place by following a communication model generally

more or less compliant with the ISO standard reference model called OSI (Open

System Interconnection).

 Network topologies fall more or less naturally into two categories based on

what communication strategy is fallowed when transfer messages between parties:

- Broadcast. Broadcasting means to send a message to every other computer in

the network. If a message arrives to a computer for which it was not intended,

then it will be simply discarded. This strategy can be compared with the way

radio programs are transmitted: anyone who has a radio can tune into stations

but it is up to the receiver to decide whether to do so. This strategy is

generally applied in local area network (LAN).

- Unicast. Unicasting means that the messages are sent specifically to a single

receiver. Unicasting is typically adopted in WANs where the geographical

distances prohibit the use of efficient transmission media that are used to

exploit broadcast mechanisms effectively.

 In order to increase the quality of offered services in a network can be

included specialized servers as:

- mail servers – that allow the exchange of electronic messages;

- print servers – that allow sharing all connected printers in the network;

- modem servers – that allow to the user to share many modems at a time for

calls in or out to the network;

- fax servers – that allow to users to receive and send fax in the network

 20

environment;

- application servers – dedicated to a specific application and that allow users

share the application and his data; - etc.

Repeaters. Repeaters provide the cheapest and "dumbest" interconnection between

LAN's. A repeater provides a simple signal-regeneration service and operates at

physical layer. As an electrical signal passes through a transmission media (for

example, a length of coaxial cable), the signal degenerates in direct proportion to the

distance traveled. This signal loss is called attenuation. A repeater links identical

LANs, for instance two Ethernets, and protects against attenuation. A repeater simply

amplifies the signal received on one cable segment and then retransmits (repeats) the

same signal to another cable segment. The repeaters are specific to the transmission

medium used. A repeater is required when the total length of a single span of

network cable is larger than the maximum allowed for the cable type used.

Connecting devices - such as switches, bridges, routers, and gateways - plays also a

repeater role in the network.

 Examples external view repeaters:

Hubs (concentrators). Network cable usually doesn't connect computers directly

to each other. Instead, each computer is connected by cable to a device known as a

hub (replaced now by switch). The hub, in turn, connects to the rest of the network

and, possibly, to the server. Each hub contains a certain number of ports, such as 4,

8, 16, 24 etc, that allow connect as many computers as the number of ports they

have. We need at least one hub/switch for our network. A hub is simply a box with

circuitry inside and a bunch of jacks for RJ-45 plugs on the back. The circuitry

inside the box links the cables together. A hub doesn't know anything about the

computers that are connected to each of its ports: when a computer connected to

the hub sends a packet to a computer that's connected to another port, the hub sends

a duplicate copy of the packet to all its ports. Hubs are distinguished by the number

of features they offer and most of those features that are designed to make the

network administrator's job easier and are unnecessary in a small (say five or fewer

PCs) peer-to-peer network. For such smaller systems, the minimal hub will be all

you need. Hubs (and concentrators) are used to connect multiple users to a single

physical device, which connects to the network. Hubs and concentrators act as

repeaters by regenerating the signal as it passes through them.

The hubs operate at Layer 1 and 2 of OSI model.

Examples external view hubs:

These images introduce a network hub
external view. It is very difficult to see them at
work or in a store since they replaced by
switches.

 This is a USB hub (not
network!) and indeed
you have the chance to
see this at work

 21

Bridges. Between the nodes of a network and between LAN's we can realize the

communications by intermediate of bridges. Bridges provide a more intelligent

connection service. A bridge can be thought of as a conscientious, but rather

unimaginative, mail room clerk. From the point of view of a user, the bridges create

an extended network providing access to previously unavailable devices and services.

On a higher level a bridge effectively segment the network, keeping local traffic off

the extended network while forwarding traffic intended for a remote device. Bridges

are used to logically separate network segments within the same network. They

operate at the OSI data link layer (Layer 2) and are independent of higher-layer

protocols. The bridge is able to read MAC (Media Access Control) address and

monitors packets as they move between segments, keeping track of the MAC

addresses that are associated with various ports. As they gain more knowledge of

the nodes connected to each network, they are better able to manage traffic flow.

 Examples external view bridges:

Wire bridges Wireless bridges

Switches. Switches are similar to bridges but usually have more ports. Switches

provide a unique network segment on each port, thereby separating collision

domains. Today, network designers are replacing hubs in their wiring closets with

switches to increase their network performance and bandwidth while protecting

their existing wiring investments. A switch knows which computer is connected to

each of its ports and when it receives a packet intended for a particular computer, it

sends the packet only to the port that the recipient is connected to. A switch

controls the flow of data by using the MAC address that is placed on each data

packet (as address of source and destination). Switches divide networks into what

are called Virtual LANs or VLANs. The VLAN is a logical grouping of computers

on the network into a sort of communication group without requiring the computers

to be in close proximity or even on the same floor. This allows to group computers

that serve similar types of users into a VLAN (for example, even if your

accountants are spread all over your company's office building, their computers can

still be made part of the same VLAN, which would share bandwidth). Each

computer on the network can be connected to its own port on the switch. By this

direct connection the switch can supply each PC with a dedicated amount of

bandwidth (for example, users on a 100Mbps Ethernet network can realize

bandwidth of 100Mbps), so that the computers don't compete for the bandwidth.

This is one reason why switches are rapidly replacing hubs. Another reason is that

some switch hardware can take advantage of full-duplex access to the network

media (which allows for the sending and receiving of data simultaneously on the

network) and a computer on a Fast Ethernet network, which runs at 100Mbps,

would actually realize a net total of 200Mbps throughput (from sending and

receiving simultaneously on the full-duplex media).

 22

 Examples external view switches:

Routers. The function of a router is to direct data along the most efficient and

economical route to the destination device. The routers, like bridges, can

effectively extend the size of a network. The routers manage the exchange of data

packets between network cabling systems, and they still to be "intelligent". From

the point of view of a network user, the routers create a network of networks

providing access to previously unavailable devices and services. They divide large

networks into logical segments called sub-networks (subnets), division based on

the addressing scheme used (such as IP, for example). Data traffic related to a

particular subnet is kept local, the router only forwards data that is meant for other

subnets on the extended network helping in that way to conserving network

bandwidth. The Internet routers serve as intermediate "store-and-forward" devices

which relay messages from source to destination. Routers decide how to forward

data packets to their destinations based on a routing table (build, for example, by

detecting the neighbor routers addresses). Routers separate broadcast domains and

are used to connect different networks. Routers direct network traffic based on the

destination network layer address (they operate at Layer 3 – Network of OSI

model) rather than the workstation data link layer or MAC address. Routers are

protocol dependent. Routers use protocols built in to their operating system to

identify neighboring routers and their network addresses (such as IP addresses).

 Examples routers:

1 WAN port 8
LAN ports

1 WAN port 4
LAN ports

2 WAN ports 8
LAN ports

Wireless dual

 Today, in data communications, all switching and routing equipment perform

two basic operations:

- Switching data frames - this is generally a store-and-forward operation in which a

frame arrives on an input medium and is transmitted to an output medium. Switching

is the process of taking an incoming frame from one interface and delivering it out

through another interface;

- Maintenance of switching operations - in this operation, switches build and

maintains switching tables and search for loops. Routers build and maintain both

routing tables and service tables.

Gateways. The gateways provide the most intelligent, but slowest, connection

service. A gateway is a combination of hardware and software that translates

between two different protocols and acts as connection point to the network.

Gateways provide translation services between different computer protocols. They

 23

allow devices on a network to communicate, and not merely connect, with devices on

a different network (they acts as an entrance point to another network). They operate

at Layer 4 - Transport of OSI model.

The new concept related to gateways refers to access mediation gateway, a

gateway between the telephony network and other networks, such as the

Internet. Access mediation supports the arbitration of call control and

signaling between individual networks, resources, users, and services.

Access mediation is the next evolutionary step for the advanced intelligent

network (AIN). With the growing importance of the Internet, access

gateways are a critical component of access mediation (International

Engineering Consortium, www.iec.org).

1.3 The communication process

 If two or more processes access same data, in the same time, we call that data

shared data. We consider now a simple communication scheme (figure 1.2) in which a

single source process hands over messages (e.g. notes) to other process designated as

target process. The actual content of each message is not important and is assumed

to take the form of a series of characters, suppose n characters. The simplest situation

occurs when we are dealing with a single note. In that case, we merely need to ensure

that if the target process wants to read the content of the note it will somehow be

delayed until the source process has finished writing it. We can say that the processes

use in common a Shared_Note. In order to synchronize the Source_Process with the

Target_Process, that means to signal the target process the moment in which the

source process writes the note (finish the writing), the message contains a field

isWritten that acts as a semaphore: it starts with a False value (meaning the note not

written yet) and ends in a True state in the moment the note is written by the sender.

The target process must wait between the moment isWritten field switches from the

False state to True state. The processes Source_Process and Target_Process

communicate by using just a single note, described as a variable length note (that

means the time needed to read/write operation vary). The data field for this variable

length note is modified by the Source_Process (it modifies also the isWritten

semaphore), and subsequently read by the Target_Process.

 In a real communication scheme the time to wait the Source_Process to write

the note is limited in order to eliminate the shutting off (non-blocking

communication). If the Target_Process and Source_Process uses the same note

repeatedly in order to exchange information the note itself should be rewritable, that

means the Target_Process

must signal to the source

process the ending of read

operation. We can add a

new semaphore, for

example called isRead that

starts with a True value,

Figure 1.2 Two processes communicating via a

single, shared note

http://www.iec.org/

 24

change his state to False value in the moment in which the isWritten take the value

True, and changes to True in the moment the Target_Process reads the note (figure

1.2). This communication schemes allow exchange no more than one piece of

information at a time.

 In practice a source

process can pass a series of

notes to target process

using a queuing

mechanism. A

Source_Process writes data

to a stream (the note, the

synchronization

information, the target

address and so on) that

subsequently flows to a

target process where it is

removed (figure 1.3).

 The

communication mechanism

between many source

processes and many target processes can follow the rules:

- any source process can pass a note to one target process (it will not know

exactly which target process has picked up its note);

- any target process can pick up a note from the stream (it will not know

exactly which source process has written the note);

- there is no restriction with respect to the number of times the stream can be

accessed (it is possible that communication could not take place).

 In this implementation scheme we never delay a process if communication

cannot proceed because the stream has either too full to write another note or because

there was simply no note to read (this is a form of non-blocking communication). A

blocking mechanism can be defined by:

- delaying the source process after a certain number of notes have been written

but not yet read;

- delaying the target process if there are no more written notes in a stream.

 We can distinguish between two kinds of communication:

- asynchronous communication in which any data that is being

communicating between source process and target process may be in

“transit” without either of two processes waiting until that transmission is

completed (it still in queue, for example). In asynchronous communications

the transmitter and receiver use separate clocks. Although the two clocks

are supposed to be running at the same speed, they don't necessarily tell the

same time. An asynchronous communications system also relies on the

timing of pulses to define the digital code. But they cannot look to their

Figure 1.3 The principle of communicating by means

of shared stream

 25

clocks for infallible guidance. A small error in timing can shift a bit a few

numbers of positions, say from the least significant place to the most

significant, which can drastically affect the meaning of the digital message;

- synchronous communication in which a source process and a target process

has read the note written by the source process. Synchronous

communications require the sending and receiving system to synchronize

their actions. They share a common time base, a serial clock. This clock

signal is passed between the two systems either as a separate signal or by

using the pulses of data in the data stream to define it. The serial

transmitter and receiver can unambiguously identify each bit in the data

stream by its relationship to the shared clock. Because each uses exactly

the same clock, they can make the match based on timing alone.

 The message based communication, suppose that the two involved processes

can play one of the roles: of a sender or of a receiver. From the moment that a

message has been sent and until the moment it is received the message is said to be in

transmission. Both sender

and receiver can be explicitly

identified through a unique

address. If we send a

message, to some specific

address, we know exactly

who‘s the other

communicating party. This

communication in which each

process has precisely one

address where it can be

contacted is known as point-

to-point communication. If

we need communicate a

message to the members of a

group the point-to-point

communication is very

restrictive (and can be found

to be impractical). In that

case of groups we can have

the situations:

- passing notes from several

source process to a target

process (e.g. all members of a

group to the server of the

Internet Service Provider –

figure 1.4);

- passing notes from one

source process to one or

Figure 1.4 Any_to_One communication

Figure 1.5 One sender to multiple receivers

Figure 1.6 Many senders to many receivers

 26

many target processes at the target process request (e. g. the server answers to the user

request – figure 1.5);

- multiple source processes

and target processes (figure

1.6).

 A source process

simply sends a note to the

note handler which must then

locate the target process to

which it can forward the note.

The notes are temporarily

stored in an incoming queue.

In order to know which target

(destination) process is

willing to a read note, a target process must first pass a request (Query) to the handler

(the requests are also temporarily stored in its queue, Query Queue). In this scheme

each sending process uses a communication buffer and has an associated output

queue in which the messages are first appended before being transmitted to the

receiver.

 After transmission a message is appended to the receiving process input

queue, from which it will be removed later. When a message is removed from the

receiver’s queue, the message is said to be delivered to the receiving process (figure

1.7).

1.4 Communication medium

In order to realize the communication and message exchange the computers

attached to a network needs a communication medium. The communication medium

is characterized by a measure called bandwidth that refers the transmission rate and

whose unit of measurement is bits per second (bps or baud) and the highest units of

this. Generally, for a communication medium, the bandwidth is defined as “the range

of frequencies transmitted without being strongly attenuated”. The bandwidth is a

property of physical medium and usually depends on the construction, thickness,

and length of the medium. The primary limit of any communications channel is its

bandwidth. For an analog channel (such as a telephone line used by modems) the

bandwidth specifies a range of frequencies, from the lowest to the highest, that the

channel can carry or that are present in the signal. It is one way of describing the

maximum amount of information that the channel can carry (the measure of analog

bandwidth is in kilohertz or megahertz). In a digital circuit, the bandwidth is the

amount of information that can pass through the channel (the measure of digital

bandwidth in bits, kilobits, or megabits per second and so on). The kilohertz of an

analog bandwidth and the kilobits per second of digital bandwidth for the same

circuit are not necessarily the same and often differ greatly. The bandwidth of a

communications channel defines the frequency limits of the signals that they can

Figure 1.7 The organization of buffered message-

passing

 27

carry. This channel bandwidth may be physically limited by the medium used by

the channel or artificially limited by communications standards. The bandwidths of

radio transmissions, for example, are limited artificially, by law, to allow more

different modulated carriers to share the air waves while preventing interference

between them.

 A network medium can use the bandwidth in two modes:

- baseband, when the entire bandwidth is allowed to a single signal;

- broadband, when the bandwidth is used to transport simultaneously two or

more independent signals (similarly with the TV transmission in witch on the

same cable have many programs simultaneously).

 A general communication medium between a set of senders and a set of

receivers is called channel. The medium used for transmission can be one or a

combination of the following:

- copper-based medium, such as those in which a copper wire is coated with an

insulating material, coaxial cables (up to 10Mbps) as used for TV sets, or so

called twisted pair connection that are used in most LANs (UTP- unshielded

twisted pair with a speed up to 100Mbps; STP – shielded twisted pair up to

100Mbps and allowing full-duplex communication) and 10 Gb with the new

10GbE Ethernet (the research is directed to define and realize the 100GbE

over copper wires);

- fiber-optic medium, by which information is transported in the form of light,

with a transmission rate > 1,000 GBps;

- satellite medium, which use radio wave to transmit data at distances over

30,000 Km;

- terrestrial microwave medium, by which radio waves are sent from one dish

(antenna, aerial) to another;

- infrared waves, as those used by remote control for TV and video/audio

devices.

One of the biggest problems faced by network system designers is keeping

radiation and interference under control. All wires act as antenna, sending and

receiving signals. As frequencies increase and wire lengths increase, the radiation

increases. The pressure is on network designers to increase both the speed (with

higher frequencies) and reach of networks (with longer cables) to keep up with the

increasing demands of industry. Since the physical circuits are not perfect another

problem of communication is error control (error-detecting and error-correcting).

 Depending on how the transmission take place and how many actors are

implied the channel have a specific name as:

- mailboxes, a channel that allow multiple senders and receivers and that are

provided with message queue;

- ports, the channel that have only one receiver;

- link, is a special type of channel with only a single sender and a single

receiver (the link refers to physical medium);

- A bidirectional link between a pair of processes which preserves the order

of message transmission is called connection.

 28

 Because each individual computer can be attached at long distance to

another by intermediate of a modem and this last are connected, if not internal, to a

port, there data is serialized or, in other words, prepared for transmission. The

transmission over a network channel uses the same principles. The basic element of

digital information in a serial communication system is the data frame. A frame

corresponds to a single character. Taken alone, that's not a whole lot of

information. A single character rarely suffices for anything except answering

multiple choice tests. To make something meaningful, you combine a sequence of

characters to form words and sentences that means a data packet in terms of

transmission process.

The structure of a packet and frame is dependent on the used protocol and

topology. As a convention if one packet built according to the rules of a specific

protocol/topology must passes over another topology the packet is first

encapsulated in a packet having the heading and trailing information as required by

this. Below is the structure of a TCP (Transmission Control Protocol) packet:

Where:

Source Port (SP) and Destination Port (DP) — Identifies points at which upper-layer

source and destination processes receive TCP services.

Sequence Number (SN) —Usually specifies the number assigned to the first byte of data

in the current message. In the connection-establishment phase, this field also can be used

to identify an initial sequence number to be used in an upcoming transmission.

Acknowledgment Number (AckN) — Contains the sequence number of the next byte of

data the sender of the packet expects to receive.

Data Offset (DO) — Indicates the number of 32-bit words in the TCP header.

Reserved (Res) — Remains reserved for future use.

Flag s— Carries a variety of control information, including the SYN and ACK bits used

for connection establishment, and the FIN bit used for connection termination.

Window — Specifies the size of the sender’s receive window (that is, the buffer space

available for incoming data).

Checksum — Indicates whether the header was damaged in transit.

Urgent Pointer (UP) — Points to the first urgent data byte in the packet.

Options — Specifies various TCP options.

Data — Contains upper-layer information.

1.5 Topologies and networks

 Topology is the cabling schematic which includes components that make up

the design of the network. The networks, or parts of these, fits in one or more

topologies from the categories described in this paragraph.

Linear (bus) topology (Ethernet, Arcnet, G-net). This topology (Figure 1.10)

consists of several Workstations (nodes, sites) and a file server, which are attached

to a common cable (like a TV cable).

S

P

D

P

S

N

AckN D

O

Res Flags Window Checksum U

P

Options Data

 29

This cable is referred to as a bus or trunk.

The nodes are attached to the cable using

either T-connectors or taps and drop

cables. The cable ends cannot be left open,

they must be terminated with a terminating

resistor device matching the impedance of

the cable. This terminator absorbs the

signal preventing it from echoing back on

the line which will cause serious signal

scrambling and bring the network down.

 With a linear topology, each node is constantly monitoring (listening) to the

cable. The node can only transmit data when the cable is idle, so it waits for the first

opportunity. The linear topology uses CSMA/CD (Carrier Sense for Multiple

Access/Carrier Detect) technology.

 The terminator can be removed and the cable extended so that it is possible to

attach new workstation (WS) to this line. The added line must be terminated with a

terminator resistor device. It is possible also to remove WS’s from this topology

without eliminating the corresponding cable (Figure 1.10).

The network with linear cabling has a single backbone, one main cable that

runs from one end of the system to the other. Along the way, PCs tap into this

backbone to send and receive signals. The PCs link to the backbone with a single

cable through which they both send and receive. In effect, the network backbone

functions as a data bus, and this configuration is often called a bus topology. In the

typical installation, a wire leads from the PC to the backbone, and a T-connector

links the two. The network backbone has a definite beginning and end.

Distributed Star Topology (S-Net, Ethernet, Arcnet...). In the most popular

network systems based on the star topology, each cable is actually twofold. Each

has two distinct connections, one for sending data from the hub to an individual PC

and one for the PC to send data back to the hub. These paired connections are

typically packaged into a single cable (figure 1.11). Star-style networks have

become popular because their topology matches that of other office wiring. In the

typical office building, the most common wiring is used by telephones, and

telephone wiring converges at the wiring closet in which is the PBX (Private

Branch Exchange, the telephone switching

equipment for a business). Star-style

topologies require only a single cable and

connection for each device to link to the

central location where all cables converge

into the network hub.

With this topology (figure 1.11.), the

nodes are connected to a central device called

a hub, multi-port repeater, wire center, and so

one. Hubs are used to split or amplify

network transmission signals. Star-style

Figure 1.10 Linear Bus Topology

Figure 1.11. Distributed Star

Topology

HUB/Switch

 30

topologies require only a single cable and connection for each device to link to the

central location where all cables converge into the network hub. The HUBs used in

networks with star topology can be of active or passive types:

- Active hubs regenerate the signals and are connected to an electrical wall outlet;

- Passive hubs have no power; they merely split the signal.

 Each combination of nodes has its own hub. A new node or hub can be added

to the network very easily. This makes the system extremely flexible for future growth

considerations. A network with a star physical topology can be set up to function as a

bus one (figure 1.12). In that scheme the hub acts as a data concentrator that mix the

signals received from all PCs and resend that data to all computers connected to.

 The active hubs that include a switching service, called switching hubs, can

switch quickly the signals

between two attached

devices. Each device

attached to the hub has its

own private connection and

can access all bandwidth of

his connection and this

increases the performances

of the network (figure

1.13).

Logical Ring Topology. The ring topology looks like a linear network that's biting

its own tail. The backbone is a continuous loop, a ring, with no end. But the ring is

not a single, continuous wire. Instead it is made of short segments daisy chained

from one PC to the next, the last connected, in turn, to the first. Each PC thus has

two connections. One wire connects a PC to the PC before it in the ring, and a

second wire leads to the next PC in the ring. Signals must traverse through one PC

to get to the next, and the signals typically are listened to and analyzed along the

way.

 In a physical ring

topology (figure 1.14.), the cable

runs from node to node with the

last node connecting back to the

first. Here the central controlling

device (file server) pools each

node in a predefined sequence

querying for a request for network

access. If a node makes a request,

the message is transmitted. If no

request is made, then the server

moves to the next node.

 In a logical ring (figure 1.15) the nodes are actually cabled in a distributed

star (star-wired ring) or linear (token-bus) topology. A token is passed from node to

Figure 1.12 The logical

transformation of a star

network in a bus

(functionally)

Figure 1.13 The principle

of switching HUB

Figure 1.14

Physical Ring

Topology

Figure 1.15 Logical

Ring Topology

 31

node in a logical ring. A token is a combination of special recognizable bits which

grant permission to the network interface card in possession of the token to transmit

data. When a token is lost or a node is added to the network, all nodes stop and count

down from their respective addresses until the ring is re-established. Each one

recognizes the address of the node it receives from, and the address of the node is

sends to, as well its own address creating the ring.

FDDI networks. FDDI – Fiber Distributed Data Interface - works as a token ring

network at 100Mbps. A FDDI network can include a primary and secondary counter-

rotating rings configured to transmit data in opposite directions (figure 1.16 a). In

these configurations a station can be attached to:

- A single ring – singularly attached station – SS (Single Attached Station – SAS) ;

- Both rings – dually attached station – SD (Dual Attached Station - DAS);

 he connecting devices can be attached, for example:

- Single Attached Concentrator (SAC);

- Dual Attached Concentrator (DAC).

 Due to his configuration mode a FDDI network can be dynamically rebuild at

physical failure of a cable or node (figure 1.16 b). The rings of FDDI networks can be

extended to 100Km in diameter. FDDI is not so good for workstations because in that

case is necessary to be reconfigured frequently. Even they offer an attractive speed

because of the high costs of devices they used generally as transport networks for

Internet.

Complex LANs

 A saturated bus network can be extended

by connecting a supplemental bus network by

intermediate of a bridge as shown in figure 1.17.

Figure 1.16 a) The principle of

making rings in FDDI networks

Figure 1.16 b) The principle of ring

recovery in FDDI networks

Figure 1.17 Extending bus

networks

 32

 In the case in which the used links are

point-to-point (P-P) the devices are added simply

by adding new connections (figure 1.18).

 If each device is connected to all others

the obtained network is called mesh and his

appearance is similarly to the example in figure

1.19. Such network has the advantage of the usage

of all bandwidth and the possibility to find a route

in the moment a direct connection fails.

 The large LANs uses a version of the

mesh structure called hybrid mesh his topology

having a form similarly to the figure 1.20.

Wide Area Network topologies. A Wide Area

Network (WAN) spans a large geographical area, often a country or a continent. In

the WAN the hosts are connected by intermediate of communication subnetworks

(figure 1.21, 1.22). Subnets are composed by two distinct elements:

- transmission lines,

used to move

messages between

machines;

- switching

elements,

represented by

specialized

computers and/or

routers that

connect three or

more lines.

In most

WANs, the network

contains numerous

transmission lines,

each one connecting a

pair of routers. If two routers that not connected directly whish communicate they

must do this indirectly, via other routers.

WAN’s are organized completely differently from local area network, in a

shape of a graph (figure 1.21) in which point-to-point connections, established

between routers, are now taken as they are: messages are forwarded according to

some routing message and routing is based on a technology referred as switching

technology (circuit-switched or packet-switched).

Figure 1.18 Extending P-P

networks

Figure 1.19 Mesh networks

Figure 1.20 Hybrid mesh

network

Figure 1.21 WAN topology

 33

Circuit-switched technology is a connection-oriented service modeled after

the telephone system. Packet-switching technology is a connectionless-oriented

service modeled after the postal system.

The cabling schematic used for the communication subnetworks of the

WAN gives his topology, a graph.

In the figure 1.21 are shown two alternative routes, labeled with r1 and r2, for

getting message from node S (sender) to node R (receiver) in a WAN. The act of

moving information across a WAN (generally an internetwork) from a source to a

destination is called routing and take place at Layer 3 (network layer) of OSI

reference model (see §1.10 Routers, in this chapter).

In a circuit-switched

technology whenever a

message is to be sent it is first

necessary to set up a complete

physical connection from

sender S to the receiver R. An

essential part of the WAN is

represented by the routers,

which acts as true switches

in a circuit-switched

network. A limitation of that

kind of WAN is that as long

as neither the sender nor the

receiver has indicated that

communication has ended,

the connection should be

maintained.

 Alternatively to circuit-switched technology the packet-switched

technology can be employed: a message is disassembled into a number of packets

(and then decomposed into a number of frames formed by series of bits) which

subsequently sent across the network (no full connection between sender and

receiver is required). Each packet carries the address of the destination and nodes

in the WAN will forward a packet in the right direction. When a packet is sent

from one router to another via one or more intermediate routers, the packet is

received at each intermediate router in its entirety, stored there until the required

output line is free, and then forwarded.

In a WAN:

 Point-to-point link provides a single, pre-established WAN communications

path from the customer premises through a carrier network, such as a

telephone company, to a remote network. Point-to-point lines are usually

leased from a carrier and thus are often called leased lines.

 Switched circuits allow data connections that can be initiated when needed

and terminated when communication is complete (Integrated Services Digital

Network - ISDN, for example). When a router has data for a remote site, the

Figure 1.22 WAN - communication subnetworks,

networks, and hosts

 34

switched circuit is initiated with the circuit number of the remote network. In

the case of ISDN circuits, the device actually places a call to the telephone

number of the remote ISDN circuit. When the two networks are connected

and authenticated, they can transfer data.

 Packet switching is a technology in which users share common carrier

resources (many customers share the carrier’s network). The carrier can

create virtual circuits between customers’ sites by which packets of data are

delivered from one to the other through the network. The section of the

carrier’s network that is shared is often referred to as a cloud. Some examples

of packet-switching networks include Asynchronous Transfer Mode (ATM),

Frame Relay, Switched Multimegabit Data Services (SMDS), and X.25.

 A virtual circuit is a logical circuit created within a shared network between

two network devices. Two types of virtual circuits exist: switched virtual

circuits (SVCs) and permanent virtual circuits (PVCs).
o SVCs are virtual circuits that are dynamically established on demand and

terminated when transmission is complete (are used in situations in which

data transmission between devices is sporadic). Communication over an

SVC consists of three phases: circuit establishment, data transfer, and circuit

termination.

o PVC is a permanently established virtual circuit that consists of one mode:

data transfer. PVCs are used in situations in which data transfer between

devices is constant.

 Dialup services offer cost-effective methods for connectivity across WANs.

Two popular dialup implementations are dial-on-demand routing (DDR)

and dial backup:
o DDR is a technique whereby a router can dynamically initiate a call on a

switched circuit when it needs to send data.

o In dial backup, the switched circuit is used to provide backup service for

another type of circuit, such as point-to-point or packet switching. The

router is configured so that when a failure is detected on the primary circuit,

the dial backup line is initiated. The dial backup line then supports the WAN

connection until the primary circuit is restored. When this occurs, the dial

backup connection is terminated.

WANs uses numerous types of devices that are specific to network environments such

as routers, ATM switches, multiplexers, or specific to WAN environments WAN

switches, access servers, modems, CSU/DSUs, and ISDN terminal adapters:

- WAN switches - a multiport internetworking device used in carrier networks such as

Frame Relay, X.25, and SMDS, and operate at the data link layer of the OSI reference

model;

- Access servers - a concentration point for dial-in and dial-out connections;

- Modems - a device that interprets digital and analog signals, enabling data to be

transmitted over voice-grade telephone lines;

- CSU/DSUs - channel service unit/digital service unit is a digital-interface device

used to connect a router to a digital circuit like a T1. The CSU/DSU also provides

signal timing for communication between these devices;

 35

- ISDN terminal adapter - is a device used to connect ISDN Basic Rate Interface

(BRI) connections to other interfaces, such as EIA/TIA-232 on a router.

Storage Area Network (SAN). A SAN is a dedicated high-speed sub-network of

interconnected shared storage devices. The storage devices are available to all

servers on LAN or WAN so that each server acts as pathway between the end user

and the stored data.

Being a network SAN has two basic components:

- SAN hardware, composed by high speed communication media (such as

fiber channel, for example), storage devices, and switches

- SAN software, used to manage, monitor and configure the SAN.

 Examples external view storage and connecting components

for SAN:

a)

b)

IBM
TotalStorage
SAN256B

HP LeftHand
SANs

SUN Brocade
DCX-4S

Backbone

a) Switch and b) disk
storage

Wireless LAN (WLAN). Wireless LAN’s uses short distance radio waves for

communication among station devices (generally computers) provided with

a wireless network card, or among station devices and access point devices

(Wi-Fi routers), as shown in the following figure:

The basic building block of IEEE 802.11 LAN [IEEE-802.11] is the Basic

Service Set (BSS) that allow to two or more stations (STA), provided with a

wireless network card, to communicate directly.

 36

The connected stations are called members and the area where these

members of WLAN remain in communication (coverage area) is called

Basic Service Area (BSA). If a communicating station goes away of that

area it cannot communicate directly with the other members of BSS. The

IBSS (Independent Basic Service Set) is the most basic type of an IEEE

802.11 LAN. A minimal IBSS may consist of two STAs that are able to

communicate directly and the network obtained is called ad hoc network (a

network that is not preplanned and that exists as long as the connection

maintained, as is needed. Even this type of network is dynamic it has a

strong limitation due to the shortness of the distance covered. If the distance

should be enlarged many BSSs can be interconnected to a Distribution

System (DS). The IEEE 802.11 standard specification realizes a logical

separation of the Wireless Medium (WM) from the Distribution System

Medium (DSM). The access via the wireless medium for associated stations

is realized by intermediate of Access Point (AP) devices (Wi-Fi routers). A

wireless network of arbitrary size and complexity (such as a network of

networks), an extended service set (ESS), can be created, as union of all

BSSs connected to a DS. The WLAN uniquely identified by a 32 character

string that is attached to the header of packets sent over the WLAN. All

access points and all devices attempting to connect to a specific WLAN

must use the same SSID.

1.6 Cooperative processing

 Topology describes only one physical aspect of a network. The

connections between the various PCs in a network also can fit one of two logical

hierarchies: client-server and peer-to-peer. The alternatives form a class system

among PCs. Some networks treat all PCs the same; others elevate particular

computers to a special, more important role. Although the network serves the same

role in either case, these two hierarchical systems enforce a few differences in how

the network is used.

Client-Server. The server in a client-server network runs special software (the

network operating system). The server need not be a PC. Sometimes a mainframe

still slaves away at the center of a network. For PC networks, typically, the server

is a special PC more powerful than the rest in the network (not with standing that

the server's work is less computationally intense than that of the clients it serves).

Its most important feature is storage. Because its file space is shared by many—

perhaps hundreds—of PCs, it requires huge amounts of mass storage. In addition,

the server is designed to be more reliable because all the PCs in the network

depend on its proper functioning. If it fails, the entire network suffers. Most

modern servers are designed to be fault-tolerant. That is, they will continue to run

without interruption despite a fault, such as the failure of a hardware subsystem.

 37

Most servers also use the most powerful available microprocessors, not from need

but because the price difference is tiny once the additional ruggedness and storage

are factored in—and because most managers think that the single most important

PC in a network should be the most powerful. The corresponding term for the

desktop PC workstations is client. This form of network link is, consequently,

called a client-server hierarchy. Note that the special role of the server gives it

more importance but also relegates it to the role of a slave that serves the need of

many masters, the clients.

Peer-to-Peer. In this hierarchy every PC is equal. PCs share files and other

resources (such as printers) among one another. They share equally, each as the

peer of the others, so this scheme is called peer-to-peer networking. Peer-to-peer

means that there is no dedicated file server as you would find in big, complex

networks. All PCs can have their own, local storage, and each PC is (or can be)

granted access to the disk drives and printers connected to the others. Even in peer-

to-peer networks, some PCs are likely to be more powerful than others or have

larger disk drives or some such distinction. Some PCs may have only floppy disks

and depend on the network to supply the equivalent of hard disk storage. In other

words, some PCs are created more equal than others. In fact, it's not unusual for a

peer-to-peer network to have a single dominant PC that serves most of the needs of

the others. In a peer-to-peer network, no one PC needs to be particularly endowed

with overwhelming mass storage or an incomprehensible network operating

system. Each computer connects to the network using simple driver software that

makes the resources of the other PCs appear as extra disk drives and printers. The

failure of a network peer only eliminates that peer; the rest of the network

continues to operate. And if you duplicate vital files on at least two peers, you'll

never have to fear losing data from the crash of a single system.
Peer-to-peer networking (or P2P) is the utilization of the relatively powerful

computers (personal computers) that exist at the edge of the Internet for more than

just client-based computing tasks [MSTcN]. The modern personal computer (PC)

has a very fast processor, vast memory, and a large hard disk, none of which are

being fully utilized when performing common computing tasks such as e-mail and

Web browsing. The modern PC can easily act as both a client and server (a peer)

for many types of applications. P2P networks are typically used for connecting

nodes via largely ad hoc connections for many purposes such as file sharing (files

containing audio, video, data or anything in digital format, and real-time data, such

as telephony traffic).

Peer-to-peer networking has the following advantages over client/server

networking:

 Content and resources can be shared from both the center and the edge of

the network. In client/server networking, content and resources are

typically shared from only the center of the network.

 A network of peers is easily scaled and more reliable than a single server.

A single server is subject to a single point of failure or can be a

bottleneck in times of high network utilization.

 38

 A network of peers can share its processor, consolidating computing

resources for distributed computing tasks, rather than relying on a single

computer, such as a supercomputer.

 Shared resources of peer computers can be directly accessed. Rather than

sharing a file stored on a central server, a peer can share the file directly

from its local storage.

Peer-to-peer networking solves the following problems:

 Allows the processing resources of edge computers to be utilized for

distributed computing tasks.

 Allows local resources to be shared directly, without the need for

intermediate servers.

 Allows efficient multipoint communication without having to rely on IP

multicast infrastructure.

Peer-to-peer networking enables or enhances the following scenarios:

- Real-time communications (RTC);

- Collaboration;

- Content distribution;

- Distributed processing;

- Improved Internet technologies.

 Even though many organizations still process the balk of their information on

large mainframe computers, the trend is migrating down to smaller, more cost-

effective computers such as microcomputers and LAN servers. Cooperative

processing environments provide the capability for parts of on application to execute

on different computers, with data at various networked sites. The client/server

architecture is a common architecture used to implement cooperative processing.

More generally, trough cooperative processing architectures have two or more

computers sharing application and/or file or database processing. This allows

distribution of programs, files and databases across a network of interconnected

computers. Cooperative processing provides transparent access to computing

resources in a network so that application programs and users do not need to know

where resources are located. Cooperative processing can provide a single user

interface to a wide variety of remote computing resources.

 This cooperative processing may be one of host-based, peer-to-peer or

workstation-based processing.

1
0
 Host-Based processing (or front-end). Front-end processing involves

host applications sending user interface information to client workstations as

if these workstations where simple host terminals.

A workstation application reads host computer transmissions by calling an

application program resident on the workstation

figure 1.21. Host user interface data are mapped

to fields on the workstation user interface screen.

Then the workstation application may proceed to

edit and process the input from the user once a

transaction has been completed, the workstation

user interface back into transaction fields and send the data back to the host

using host terminal emulation. This type of processing is more advanced than

Figure 1.21 Host-

based Processing

 39

simple dumb terminal processing. No much is gained from this type of

processing, since most of the work is still done on the host. Still, the

workstation interface can be tailored to the user in ways that the host terminal

cannot be.

2
0
 Peer-to-peer processing. With this type of processing, two computers

share the work load as if the two were equivalent

computers (even though one could be a

workstation computer and another a powerful

mainframe computer). One computer typically

handles the user interface processing while the

other computer handles file or database

processing (figure 1.22.).

3
0
 Workstation-Based Processing. With this type of cooperative processing,

a workstation program captures all user interface information, processes the

information such as the translating of some or all of database or file

information into a format that can be used on a host computer (the translation

into a SQL query, for example). This transaction

or query can then be shipped to one or most host

computers using ordinary communications lines

but acting as if the host computers are the local

databases and file managers (figure 1.23.). The

workstation environment can then act as a

control center to process data from multiple host computers.

This approach loads most of the application processing on the client

workstations, so it can save processing costs avoided on the host. It typically

requires more powerful workstation if multiple complex applications are to

operate simultaneously. If only one application is used by the workstation

user at a time, then a less costly workstation may be used.

1.7 Communication models

 Getting a message from here to there, especially when "here" and "there" are

computers, is not a trivial task, even for designers of computer systems. In order to

realize communication some level (or layers) of abstraction can be considered:

L1: Physical connection between two computers, particularly transmission medium;

L2: Transmission models (i.e. how a receiver can pick up the bits that have been put

on a line by a sender);

L3: Multiplexing, which is concerned with sending several signals at the same time

over a single medium in such a way each signal can be recognized separately by

various receivers;

L4: Switching technology, in which we can make distinction between absence of

switches (LANs) and circuit or packet-switching network (WANs);

L5: Frame transmission, particularly the means to send and receive a series of bits,

and means to detect that something went wrong during the transmission;

Figure 1.22 Peer-to-

Peer Processing

Figure 1.23 Workstation

Processing

 40

L6: Data transmission, involving error-free transmission of large amounts of data

from one computer to another by splitting the data into a series of frames.

 In order to realize each level an agreement must be reached between Sender

and Receiver concerning how communications is going to take place at that level. The

agreements can be:

- intra-level agreements or

horizontal that deals with

agreements between Sender

and Receiver with respect to a

single level;

- inter-level agreements or

vertical that describe how

function at a higher level –

Nk, for example – can be

realized by means of the

functions available at one

level lower – Nk-1, for

example. This inter-level

agreements form the interface

between two adjacent levels

(figure 1.24).

Many organizations are involved in setting standards for networking from

which the five most important organizations are:

 American National Standards Institute (ANSI, pronounced An-See):

The official standards organization in the United States (http://www.ansi.org);

 Institute of Electrical and Electronics Engineers (IEEE, pronounced

Eye-triple-E): An international organization that publishes several key

networking standards; in particular the IEEE 802.3 is the official standard for

the Ethernet networking system (http://www.ieee.org);

 International Organization for Standardization (ISO): A federation of

more than 100 standards organizations from throughout the world

(http://www.iso.org).

 Internet Engineering Task Force (IETF): The organization responsible

for the protocols that drive the Internet (http://www.ietf.org);

 World Wide Web Consortium (W3C): An international organization that

handles the development of standards for the World Wide Web

(http://www.w3c.org).

OSI MODEL

 In an attempt to simplify inter-device communication, the International

Organization for Standardization, commonly referred to as ISO, proposed a seven-

layer model of communication. Known as the Open System Interconnection (OSI)

reference model, and shown on the figure 1.25, this model has provided the impetus

for practically all recent network design activities.

Figure 1.24 The principle of layered agreements

http://www.ansi.org/
http://www.ieee.org/
http://www.iso.org/
http://www.ietf.org/
http://www.w3c.org/

 41

 Each layer in the model deals with specific computer-communication

functions. For our purposes, you should be familiar with at least the first four layers:

1) Physical layer - The lowest layer

of the OSI model, the physical

layer, describes the transmission

of signals across a medium (raw

bits over a communication

channel) that connects

communicating devices. The

media may be wire (as in the case

of coaxial cable, twisted pair wire

or fiber optic cable) or wireless (as in the case of microwave, infrared waves

or satellite communications). A repeater which amplifies and repeats a signal

is an example of a device that operates at the physical layer. In other words,

the first layer of the OSI Reference Model defines the basic hardware of

the network, which is the “cable” that conducts the flow of information

between the devices linked by the network. This layer defines, for

example, not only the type of wire (for example, coaxial cable or twisted

pair wire) but the possible lengths and connections of the wire, the signals

on the wire, and the interfaces of the cabling system. This is the level at

which the device that connects a PC to the network (the network host

adapter) is defined. This layer must ensure that if a 1 bit is sent by one side

a 1 bit (not 0) will be received by the other side.

2) Data Link layer - The next OSI layer, the data link layer, deals with the

transmission of data between devices on the same network. In addition to

describing how a device accesses the transmission media, the data link layer

provides some level of error detection and control. LAN technologies such as

Ethernet, Token Ring, and FDDI operate at this layer. “The main task of that

layer is to transform a raw transmission facility into a line that appears free of

transmission errors to the network layer”. This task is accomplished at sender

side by breaking the raw input data into data frames and by transmitting

sequentially these frames. The data link layer also introduces addressing.

Data link addresses, usually called machine or physical addresses (Media

Access Control - MAC address), provide a unique identifier for each device.

Bridges operate at the data link layer. It defines how information gains

access to the wiring system. The Data Link layer defines the basic protocol

used in the local network. This is the method used for deciding which PC

can send a message over the cable at any given time, the form of the

messages, and the transmission method of those messages. This level

defines the structure of the data that is transferred across the network. All

data transmitted under a given protocol takes a common form called the

packet, or network data frame, each of which is a block of data that is

strictly formatted and may include destination and source identification as

well as error correction information. All network data transfers are divided

Layer 7 Application

Layer 6 Presentation

Layer 5 Session

Layer 4 Transport

Layer 3 Network

Layer 2 Data Link Control

Layer 1 PHYSICAL

Figure 1.25 The OSI reference model

 42

into one or more packets, the length of which is carefully controlled.

Breaking network messages into multiple packets enables the network to

be shared without interference and interminable waits for access. If you

transferred a large file, say a bitmap, across the network in one piece, you

might monopolize the entire network for the duration of the transfer.

Everyone would have to wait. By breaking all transfers into manageable

pieces, everyone gets access in a relatively brief period, making the

network more responsive.

3) Network layer - The network layer, unlike the physical and data link layers,

deals with the transfer of data between devices on different networks. For

example, the network layer might manage the transfer of data from a user on

the Engineering LAN to a user on the Manufacturing LAN through the

intermediate Administration LAN. The network layer adds the concept of a

network address, a specific identifier for each intermediate network between

the data source and destination. Routers operate at the network layer. This

layer defines how the network moves information from one device to

another. This layer corresponds to the hardware interface function BIOS of

an individual PC, because it provides a common software interface that

hides differences in underlying hardware. Software of higher layers can run

on any lower layer hardware because of the compatibility this layer

affords. Protocols that enable the exchange of packets between different

networks operate at this level.

4) Transport layer - This level is for the control of data movement across the

network. It defines how messages are handled, particularly how the

network reacts to packets that become lost or to other errors that may

occur. The transport layer is probably of most interest to network

administrators or designers in that it manages the transfer of data from a

source program to a destination program. End-to-end management is

facilitated by yet another type of address, the process address, which

identifies a specific computer program. Gateways operate at this layer and

higher OSI layers. The basic function at transport layer is to accept data from

above, split it up into smaller units if needed be, pass these to the network

layer, and ensure that the pieces all arrives correctly at the other end.

5) Session layer - This layer defines the interaction between applications and

hardware much as a PC BIOS provides function calls for programs. By

using functions defined at this Session layer, programmers can create

software that will operate on any of a wide variety of hardware. In other

words, the Session layer provides the interface for applications and the

network. Among PCs, the most common of these application interfaces is

IBM's Network Basic Input/Output System or NetBIOS. This layer allows

users on different machines to establish sessions between them.

6) Presentation layer - This layer provides the file interface between

network devices and the PC software. This layer defines the code and

format conversions that must take place so that applications running under

 43

a PC operating system, such as DOS, Windows, OS/2 or Linux, can

understand files stored under the network's native format. This layer is

concerned with the syntax and semantics of the information transmitted.

7) Application - The application layer includes the basic services that users

expect from any network including the capability to deal with files, send

messages to other network users through the mail system, and to control

print jobs. The layer contains a variety of protocols that are commonly

needed by users. One widely-used application protocol is HTTP, which is

the basis for World Wide Web (www), http://www...

 Within the OSI model, a user presents data to the application layer. Data is

passed downward through the hierarchy with each layer adding addressing and/or

control information (figure 1.26) in a process called encapsulating (by adding specific

header and/or termination data). When data reaches the lowest layer (the physical

layer), it is actually sent to a device (over the transmission channel). At the receiving

end, the process is reversed. Data is passed upward through the layer hierarchy with

each layer stripping address or control information in a process called de-

encapsulating.
In Internet the information is no sent in one large message. For efficiency reasons the

messages are broken up into separate parts called packets (usually from 1 to 1500

characters long). The transmission control protocol (TCP) performs the task of

splitting up the original message into packets on dispatch and reassembling it on

receipt. Figure 1.26 shows how each layer in the OSI stack add his header (similarly

to a destination address) to parts of the message (datagram, frames, packets and

message itself) in an encapsulating process. The datagram, frame and packet notions

are used by OSI protocols (and TCP/IP also) in the message transmission/reception

process:

- A datagram is the unit of transmission in the network layer (such as IP).

A datagram may be encapsulated in one or more packets passed to the

data link layer;

- A frame is the unit of transmission at the data link layer (DLC). A frame

may include a header and/or a trailer, along with some number of units of

data;

- A packet is the basic unit of encapsulation, which is passed across the

interface between the network layer and the data link layer. A packet is

usually mapped to a frame; the exceptions are when data link layer

Figure 1.26 Data transmission in OSI model

 44

fragmentation is being performed, or when multiple packets are

incorporated into a single frame.

 The Internet is a packet-switched network that uses TCP/IP as its protocol.

This means, as messages and packets are sent, there is no part of the network that is

dedicated to them. This is like the fact yours letters and parcels are sent by post they

mixed with letters and parcels from other people. The transmission media for Internet

such telephone lines, satellite links and optical cables are equivalent of the vans, trains

and planes that are used to carry post.

 The OSI model, particularly its conceptualization of the layered structure of

the communication process, has served as an architectural blueprint for network

designers. It also provides a hierarchical family or suite of protocols which designers

may pick and choose from.

 The earlier defined protocols were as the "languages" which enabled

computers to communicate with each other. We can now refine this definition and

describe a protocol as a set of rules that governs the transfer of data between identical

OSI layers.

The one standout exception to the OSI design is the Internet, which was

already growing, evolving, and flourishing with its own architecture. While at first

the Internet firewall separated the two approaches to network design, the quick

adoption of intranet concepts by businesses for internal publishing has spread the

Internet philosophy inside organizations.

An intranet is a private business network generally used for the distribution

of corporate information and e-mail that uses the same protocols as the Internet.

For example, a business might publish its health services or benefits manual in

HTML on its intranet.

IEEE MODEL

 The Institute of Electrical and

Electronics Engineers (IEEE) has proposed

a widely used variation of the OSI model.

This approach (see the figure 1.27) has

provided the basis for much LAN

engineering and design effort. The IEEE

model segments the logic contained within

the OSI data link layer.

1) The medium access control

(MAC) layer provides a medium-

specific access technique that

describes how a device gains control of the transmission medium. Specific

MAC-layer standards exist for Ethernet, Token Ring, and FDDI.

2) The logical link control (LLC) layer provides connection establishment, data

transfer, and connection termination services. LLC provides three types of

service:

- Unacknowledged-connectionless service - minimizes overhead and

complexity. It does not guarantee message delivery. Connectionless

Figure 1.27 The IEEE model

 45

service is analogous to the postal system in that no connection between

message source and destination is established prior to transmission. This

service is often to as "best-effort" or datagram service. It is most often

used in applications where higher-layer protocols can provide functions

for error detection, error recovery, and message sequencing, or in

applications where the loss of scattered messages may be tolerable.

- Connection-mode service - provides reliable exchange of messages. It

provides a connection-oriented service for ordered delivery and error

detection, but at the price of some increased overhead and complexity.

Connection-oriented service is analogous to the telephone system in that

a connection between message source and destination is established prior

to transmission. This service is best used in applications that involve

lengthy data exchanges, or in applications where higher-layer protocols

can be relieved of the connection management task.

- Acknowledged-connectionless service - is most often used in automated

factory environments where a central processor may communicate with a

large number of programmable devices (many of which possess limited

processing capabilities). This service relieves these devices of the

additional burden of connection management.

 While OSI has provided a conceptual framework for network designers, its

presence in terms of product designed in accordance with the conceptual model, until

recently, has been minimal in the commercial marketplace. Within marketplace, other

communication protocols and products (many of which use the OSI and IEEE layer

structures) have achieved greater dominance.

1.8 Communications protocols

 The communications protocols which have achieved greater dominance

include TCP/IP, XNS, IPX, Apple Talk, DECnet, VINES, and SNA. These protocols

are very briefly described on the next several pages.

TCP/IP. TCP/IP (named after two of its major components, the Transmission

Control Protocol and the Internet Protocol) is the fruit of government-sponsored

research faced with an exponential growth in the number of defense-related computers

and faced with a need to satisfy immediate operational requirements, the Department

of Defense (DoD) mandated that all its computer equipment conform to a series of

military standard protocols, collectively referred to as TCP/IP. These protocols were

the result of extensive research and experimentation performed by the Defense

Advanced Research Projects Agency (DARPA).

 Recognizing that the TCP/IP protocol suite did not conform to the OSI

model, the Department of Defense committed to an eventual migration to OSI

architecture. Given the current enormous installed base of TCP/IP equipment,

however, such migration has proceeded at a careful pace.

 TCP/IP has proven popular in the commercial marketplace as well. Vendors

have introduced TCP/IP-based products and usage of such products has steadily risen.

 46

Part of this growth can be traced to the inclusion of the TCP/IP protocols in the

University of California's UNIX Berkeley Software Distribution (BSD). Many

commercial users have found in TCP/IP a mature and reliable means of achieving

multi-vendor connectivity. Consequently, such users have adopted TCP/IP as an

interim step while awaiting the availability of OSI products. The major differences

between the OSI and TCP/IP:

 The application layer in TCP/IP handles the responsibilities of layers 5, 6,

and 7 in the OSI model.

 The transport layer in TCP/IP does not always guarantee reliable delivery

of packets as the transport layer in the OSI model does. TCP/IP offers an

option called UDP (User Datagram Protocol) that does not guarantee

reliable packet delivery.

 Like the OSI model, TCP/IP (whose structure is

shown in figure 1.28) consists of a hierarchical series of

layers. In contrast with the OSI model, TCP/IP collapses

networking functionality into only four layers:

1. Network interface layer - managers the exchange of

data between a device and the network to which it is

attached. It also routes data between devices on the

same network. The TCP/IP network interface layer

corresponds to the OSI physical and data link layers.

The network layer is concerned with packet routing and used low level

protocols such as ICMP (Internet Control Message Protocol), IP (Internet

Protocol), and IGMP (Internet Group Management Protocol). IP is

responsible for moving packet of data from node to node. IP forwards each

packet based on a four byte destination address (the IP number). The

Internet authorities assign ranges of numbers to different organizations.

The organizations assign groups of their numbers to departments. IP

operates on gateway machines that move data from department to

organization to region and then around the world. ICMP - provides low

level support for IP, including, error messages, routing assistance, and echo

requests.

2. Internet layer - manages the exchange of data between devices on different

networks. In IEEE terms, the internet layer provides connectionless, datagram

service. Like the OSI network layer to which it corresponds, the TCP/IP

internet layer adds a network addressing function.

3. Transport layer - provides end-to-end connectivity between data source and

destination. The TCP/IP transport layer corresponds to the OSI transport

layer. The transport uses two protocols, UDP (User Datagram Protocol)

and TCP. TCP is responsible for verifying the correct delivery of data from

client to server. Data can be lost in the intermediate network. TCP adds

support to detect errors or lost data and to trigger retransmission until the

data is correctly and completely received. TCP does guarantee delivery of

packets to the applications which use it. UDP does not guarantee packet

Figure 1.28 TCP/IP

protocol stack

 47

delivery and applications which use this must provide their own means of

verifying delivery. UDP provides a simpler protocol which as lower

overhead for single messages or for software which wishes to do its own

error checking.

4. Application layer - manages the functions (for example, remote login or file

transfer) required by user programs; it corresponds to the upper layers of the

OSI model. Some of the applications are SMTP (mail), Telnet, FTP,

Rlogin, NFS, NIS, and LPD.

TCP/IP groups together the communication protocols used to manage the

data transmission over Internet. TCP/IP is made up of two acronyms, TCP, for

Transmission Control Protocol, and IP, for Internet Protocol. Very simply

explaining, TCP handles packet flow between systems and IP handles the routing

of packets. The functioning principle is simple: TCP divides data into packets

provided with an envelope containing the required data for identification and

validation; IP provide for each packet the destination address. The packets are

placed onto the network and the routers define for each one the pathway to fallow.

To the destination (receiver) the IP address checked together with the TCP content

and if success the packets are reassembled.

The today networks are designed using a layered approach. Each layer

presents a predefined interface to the layer above it. By doing so, a modular design

can be developed so as to minimize problems in the development of new

applications or in adding new interfaces.

In the table that follows are given some details about each layer in the

TCP/IP protocol stack.

TCP/IP Protocol Stack and some software components
*)

5 Application Authentication,

compression, and end
user services.
The application layer
in TCP/IP handles the
responsibilities of
layers 5, 6, and 7 in
the OSI model.

Application programs such as HTTP,
Telnet, FTP, RLOGIN (based on
TCP), SMTP (mail), NFS, DNS, NTP
(based on UDP), PING and
TRACEROUTE (based on ICMP and
UDP).
SMTP (Simple Mail Transfer
Protocol) is an electronic mail
protocol;
FTP (File Transfer Protocol) and
TFTP (Trivial File Transfer Protocol)
allows file transfers with and,
respectively without authentication;
Telnet emulates the terminal of a
TCP/IP machine;
The utilities with an “R” prefix
(REXEC, RLOGIN, RSH, RCP etc)
execute remote commands.

4 Transport Handles the flow of
data between systems
and provides access to

The transport level uses two
protocols, UDP and TCP.
UDP which stands for User

javascript:if(confirm('http://www.mcs.kent.edu/cgi-bin/man2html?telnet%20%20/n/nThis%20file%20was%20not%20retrieved%20by%20Teleport%20Pro,%20because%20it%20is%20addressed%20on%20a%20domain%20or%20path%20outside%20the%20boundaries%20set%20for%20its%20Starting%20Address.%20%20/n/nDo%20you%20want%20to%20open%20it%20from%20the%20server?'))window.location='http://www.mcs.kent.edu/cgi-bin/man2html?telnet'
javascript:if(confirm('http://www.mcs.kent.edu/cgi-bin/man2html?ftp%20%20/n/nThis%20file%20was%20not%20retrieved%20by%20Teleport%20Pro,%20because%20it%20is%20addressed%20on%20a%20domain%20or%20path%20outside%20the%20boundaries%20set%20for%20its%20Starting%20Address.%20%20/n/nDo%20you%20want%20to%20open%20it%20from%20the%20server?'))window.location='http://www.mcs.kent.edu/cgi-bin/man2html?ftp'
javascript:if(confirm('http://www.mcs.kent.edu/cgi-bin/man2html?rlogin%20%20/n/nThis%20file%20was%20not%20retrieved%20by%20Teleport%20Pro,%20because%20it%20is%20addressed%20on%20a%20domain%20or%20path%20outside%20the%20boundaries%20set%20for%20its%20Starting%20Address.%20%20/n/nDo%20you%20want%20to%20open%20it%20from%20the%20server?'))window.location='http://www.mcs.kent.edu/cgi-bin/man2html?rlogin'
javascript:if(confirm('http://www.mcs.kent.edu/cgi-bin/man2html?nfs%20%20/n/nThis%20file%20was%20not%20retrieved%20by%20Teleport%20Pro,%20because%20it%20is%20addressed%20on%20a%20domain%20or%20path%20outside%20the%20boundaries%20set%20for%20its%20Starting%20Address.%20%20/n/nDo%20you%20want%20to%20open%20it%20from%20the%20server?'))window.location='http://www.mcs.kent.edu/cgi-bin/man2html?nfs'
javascript:if(confirm('http://www.mcs.kent.edu/cgi-bin/man2html?ping%20%20/n/nThis%20file%20was%20not%20retrieved%20by%20Teleport%20Pro,%20because%20it%20is%20addressed%20on%20a%20domain%20or%20path%20outside%20the%20boundaries%20set%20for%20its%20Starting%20Address.%20%20/n/nDo%20you%20want%20to%20open%20it%20from%20the%20server?'))window.location='http://www.mcs.kent.edu/cgi-bin/man2html?ping'

 48

the network for
applications via the
(BSD socket library).
The transport layer in
TCP/IP does not
always guarantee
reliable delivery of
packets as the
transport layer in the
OSI model does.
TCP/IP offers an
option called UDP that
does not guarantee
reliable packet
delivery.

Datagram Protocol does not
guarantee packet delivery and
applications which use this must
provide their own means of verifying
delivery. UDP - provides a simpler
protocol which as lower overhead
for single messages or for software
which wishes to do its own error
checking.
TCP - is responsible for verifying
the correct delivery of data from
client to server. Data can be lost in
the intermediate network. TCP adds
support to detect errors or lost data
and to trigger retransmission until
the data is correctly and completely
received. TCP does guarantee
delivery of packets to the
applications which use it.

3 Network Packet routing IP - is responsible for moving
packet of data from node to node.
IP forwards each packet based on a
four byte destination address (the
IP number). The Internet authorities
assign ranges of numbers to
different organizations. The
organizations assign groups of their
numbers to departments. IP
operates on gateway machines that
move data from department to
organization to region and then
around the world.
ICMP - which provides low level
support for IP, including, error
messages, routing assistance, and
echo requests.

2 Physical Kernel OS/device
driver interface to the
network interface on
the computer

The link layer is concerned with the
actual transmittal of packets as well
as IP to Ethernet address
translation. This layer is concerned
with ARP, the device driver, and
RARP.

*) The number designates the corresponding starting number level in the OSI stack

Below introduced two protocols very used in data transfers:

 SLIP – Serial Line Transfer Protocol - is a protocol for IP frames transport

over a serial link. This protocol and, his compact version CSLIP, cannot

negotiate the IP address they only transmit the information.

 49

 PPP – Point-Point-Protocol – is a transfer protocol that transfers data

packets from one point to another one. It transports any kind of packets

(does not mother which protocol used to make the packets) by

encapsulating this in PPP packet format. This protocol is used by almost

dial-up connections.

The TCP/IP protocol suite includes:

 Internet Protocol (IP) which is the low level protocol, which transports raw

data over networks;

 Internet Control Message Protocol (ICMP), which provides low level support

for IP, including, error messages, routing assistance, and echo requests;

 Address Resolution Protocol (ARP), which translates logical network

addresses (internet addresses) to hardware addresses (Ethernet addresses) and

RARP (Reverse Address Resolution Protocol) is used to translate hardware

addresses into internet addresses.
The ARP protocol operates at the link layer; it receives a destination IP

address and sends out a broadcast request for all machines to see. The request asks

the question “If you are the IP address N, please respond with your Ethernet

address”. Each host on the network monitors the network for these requests, when

its address is requested it sends an ARP reply. The ARP reply specifies the 48 bit

Ethernet address to use for that IP address. ARP assumes that every host knows

the mapping between its own hardware address and protocol address(es).

Information gathered about other hosts is accumulated in a small cache. All hosts

are equal in status; there is no distinction between clients and servers.

Packet format: To communicate mappings from <protocol, address> pairs to 48bit

Ethernet addresses, a packet format that embodies the Address Resolution Protocol

is needed. The format of the packet has the following structure:

Ethernet transmission layer (not necessarily accessible to the user):
 48.bit: Ethernet address of destination

48.bit: Ethernet address of sender
16.bit: Protocol type = ether_type$ADDRESS_RESOLUTION

Ethernet packet data:

 ar$hrd 16.bit Hardware address space (e.g., Ethernet,
Packet Radio Net.)

 ar$pro 16.bit Protocol address space. For Ethernet
hardware, this is from the set of type fields
ether_typ$<protocol>.

 ar$hln 8.bit byte length of each hardware address

 ar$pln 8.bit byte length of each protocol address

 ar$op 16.bit opcode (ares_op$REQUEST |
ares_op$REPLY)

 ar$sha nbytes Hardware address of sender of this packet, n
from the ar$hln field

 ar$spa mbytes Protocol address of sender of this packet, m
from the ar$pln field.

 ar$tha nbytes Hardware address of target of this packet (if
known).

 ar$tpa mbytes Protocol address of target.

 50

Packet Generation: As a packet is sent down through the network layers, routing

determines the protocol address of the next hop for the packet and on which piece

of hardware it expects to find the station with the immediate target protocol

address.

Packet Reception: When an address resolution packet is received, the receiving

Ethernet module gives the packet to the Address Resolution module which goes

through an algorithm similar to the following (negative conditionals indicate an

end of processing and a discarding of the packet):

?Do I have the hardware type in ar$hrd?

Yes: (almost definitely)

 [optionally check the hardware length ar$hln]

 ?Do I speak the protocol in ar$pro?

 Yes:

 [optionally check the protocol length ar$pln]

 Merge_flag := false

If the pair <protocol type, sender protocol address> is already in my

translation table, update the sender hardware address field of the entry

with the new information in the packet and set Merge_flag to true.

 ?Am I the target protocol address?

 Yes:

If Merge_flag is false, add the triplet <protocol type, sender protocol

address, sender hardware address> to the translation table.

 ?Is the opcode ares_op$REQUEST? (NOW look at the opcode!!)

 Yes:

Swap hardware and protocol fields, putting the local hardware and

protocol addresses in the sender fields.

Set the ar$op field to ares_op$REPLY

Send the packet to the (new) target hardware address on the same

hardware on which the request was received.

Notice that the <protocol type, sender protocol address, sender hardware address>

triplet is merged into the table before the opcode (operation code) is looked at.

This is on the assumption that communication is bidirectional; if A has some

reason to talk to B, then B will probably have some reason to talk to A. Notice

also that if an entry already exists for the <protocol type, sender protocol address>

pair, then the new hardware address supersedes the old one.

The RARP protocol was developed to answer the problem: Given an

Ethernet address what is the IP address assigned? The RARP was developed first

for diskless systems. When a diskless system boots it sends out a broadcast RARP

request. The server then examines the request and determines if that host is one it

is serving, if so it sends back a RARP reply containing the IP address. The host

booting then uses that address to continue booting. RARP requires one or more

server hosts to maintain a database of mappings from hardware address to protocol

address and respond to requests from client hosts. RARP uses the same packet

format used by ARP.

In Internet the data transfer unit is called datagram. Similarly to a packet

the datagram composed from a heading part and a body part (data). Data can be of

any size but is transported in physical frames build using encapsulation similarly to

OSI model and follows a decomposition model as shown in the following image:

 51

XNS. The five-layered Xerox Network Services Internet Transport Protocol (XNS),

shown in figure 1.29, was developed by the Xerox Corporation to connect Ethernets.

1. Transmission media layer - manages the exchange of data between a device

and its attached network. The XNS transmission media layer corresponds to

the OSI physical and data link layers and to the TCP/IP network interface

layer.

2. Internet layer - provides for the exchange of data

between devices on different networks. This level

defines how data is delivered across the network.

The XNS internet layer corresponds to the OSI

network layer and to the TCP/IP internet layer.

3. Transport layer - provides end-to-end connectivity

between communicating devices. The XNS

transport layer corresponds to the OSI and TCP/IP

transport layers.

4. Control layer - manages data presentation and the control of device resources.

The XNS control layer corresponds to the OSI session and presentation

layers.

5. Application layer - manages data semantics or meaning. The XNS application

layer corresponds to the OSI and TCP/IP application layers.

 XNS spawned several proprietary derivatives. The most widespread of these

derivatives is Novell's Internet Packet Exchange Protocol (IPX).

IPX

 IPX, which is defined by Novell as a "service" that provides applications with

the ability to send and receive messages across a network, is usually found in PC or

workstation environments, supporting a wide variety of LAN topologies and media. In

many ways, IPX is virtually identical to XNS - both are based on the same five-layer

hierarchy. These protocol families differ primarily in IPX's provision of value-added

features such as the Service Advertising Protocol, which enables IPX servers to

broadcast their identity and offered services across a network.

Figure 1.29 The XNS

protocol

 52

 The most common workstation protocols, used by Novell, are IPX

(Internetwork Packet eXchange) and SPX (Sequenced Packet eXchange). The File

Server protocol can use the guidelines of international standards. For example, the File

Server protocol NetWare v3.11 has six layers of communication protocols between an

application and the computer hardware (figure 1.30).

 These protocols interacts with previous

one and with the next one, except for the

Application layer that interacts with the end user

using an application program and except for the

Hardware layer who interacts with the hardware

under the specification of this last one.

 The communication protocols allow the

Service Protocol Layer to communicate with the

Link Support Layer.

 The signal route for transmitting data between various parts of the network is

called bus. Several devices can be connected to a single bus, allowing them to share

the same data pathway. We use to connect the parts of a network interface cards. The

network interface cards are connected using linear (bus), logical ring, and distributed

star topologies. Between the sites of a network and between LAN's we realize the

communications by intermediate of routers. The router manages the exchange of data

packets between network cabling systems, and they still to be "intelligent". Between

different types of networks the communication and adaptation of messages is ensured

by bridges. The router can include the bridge functions, such that the terms can be

used to denote the same functionality. Bridges can be local or remote. NetWare

routers do more than transfer data packets between networks that use the same

communications protocol. NetWare routers not only pass data packets, but they route

the packets by way of the most efficient path. NetWare routers can also connect

cabling systems that use different kinds of transmission media and different

addressing systems. For example, a NetWare router can connect a network using the

Ethernet addressing structure and RG/58 coaxial cable to another network using the

ARCNET addressing structure and RG/62 coaxial cable.

 Two main types of bridges exist in NetWare (the exemplifications and

applications names are from Novell v3.11 NetWare):

- Internal - that runs as part of a file server. It connects separate network cabling

topologies or separate networks by way of the server's NetWare operating system.

- External - that runs in a networked computer that is not a file server. It manages

packet routing with ROUTEGEN.EXE. External routers can be dedicated or

nondedicated:

 Dedicated - A computer that works only as a router. It router can't

function as a workstation. Since no workstation applications run on this

kind of router, such applications can't hang and cause the router to stop

operating. Router failure stops data sharing between networks, and also

brings down workstations connected to the server via the router.

Application Layer

Service Protocol Layer

Communication Protocol Layer

Link Support Layer

Driver Layer

Hardware Layer

Figure 1.30 Novell NetWare

v3.11 protocols

 53

 Nondedicated - Can function simultaneously as a router and router as a

workstation. In a nondedicated router, the workstation's NetWare shell

runs "on top of" the router software.

 The NetWare routers can be:

 Local - A bridge used within the cable-length limitations for its line

drivers.

 Remote - A router connected beyond its driver limitations. You can find

the cable-length limits for your line drivers in the NetWare installation

supplements.

 Not only these protocols are developed and used but they still dedicated to a

computer platform, such as AppleTalk and DECNET. Other protocols such as SNA

(Systems Network Architecture) are very powerful and reflects the OSI model but

they are no such used in Romania. Because this protocol is OSI oriented it works as

this one. The Vines (Virtual Networking System) based on UNIX System 5.3 reflects

the OSI model and use IEEE standards, and industry standard protocols such as

TCP/IP, AppleTalk and X.25 (figure 1.31).

1.9 Standards

A network is a collection of ideas, of hardware and software. The software

comprises both the programs that make it work and the protocols that let

everything work together. The hardware involves the network adapters, the wires,

hubs, concentrators, routers, and even more exotic fauna. Getting it all to work

together requires standardization. Because of the layered design of most networks,

these standards can appear at

any level in the hierarchy, and

they do. Some cover a single

layer and others span them all to

create a cohesive system.

Ethernet. The progenitor of all

of today's networks was the

Ethernet system originally

developed in the 1970s at the

Xerox Corporation's Palo Alto

Research Center for linking its

Alto workstations to laser

printers. The invention of

Ethernet is usually credited to

Robert Metcalf, who later went

on to found 3Com Corporation,

an early major supplier of PC

networking hardware and software. During its first years, Ethernet was proprietary

to Xerox, a technology without a purpose, in a world in which the PC had not yet

been invented. In September 1980, however, Xerox joined with minicomputer

Figure 1.31 Vines protocols

 54

maker Digital Equipment Corporation (DEC) and semiconductor manufacturer

Intel Corporation to publish the first Ethernet specification, which later became

known as E.SPEC VER.1. The original specification was followed in November

1982 by a revision that has become today's widely used standard, E.SPEC VER.2.

This specification is not what most people call Ethernet, however. In January 1985,

the Institute of Electrical and Electronic Engineers (IEEE) published a networking

system derived from Ethernet but not identical with it. The result was the IEEE

802.3 specification. Ethernet and IEEE 802.3 share many characteristics -

physically, they use the same wiring and connection schemes - but each uses its

own packet structure. Consequently, although you can plug host adapters for true

Ethernet and IEEE 802.3 together in the same cabling system, the two standards

will not be able to talk to one another. Some PC host adapters, however, know how

to speak both languages and can exchange packets with either standard. The basis

of Ethernet is a clever scheme for arbitrating access to the central bus of the

system. The protocol, formally described as Carrier Sensing, Multiple Access with

Collision Detection (CSMA/CD) is often described as being like a party line. It's

not. It's much more like polite conversation. All the PCs in the network patiently

listen to everything that's going on across the network backbone. Only when there

is a pause in the conversation will a new PC begin to speak. And if two or more

PCs start to talk at the same time, all become quiet. They will wait for a random

interval (and because it is random, each will wait a different interval) and, after the

wait, attempt to begin speaking again. One will be lucky and win access to the

network. The other, unlucky PCs will hear the first PC blabbing away and wait for

another pause. Access to the network line is not guaranteed in any period by the

Ethernet protocol. The laws of probability guide the system, and they dictate that

eventually every device that desires access will get it. Consequently, Ethernet is

described as a probabilistic access system. As a practical matter, when few devices

(compared to the bandwidth of the system) attempt to use the Ethernet system,

delays are minimal because all of them trying to talk at one time is unlikely. As

demand approaches the capacity of the system, however, the efficiency of

probability-based protocol plummets. The size limit of an Ethernet system is not

set by the number of PCs but by the amount of traffic; the more packets PCs send,

the more contention, and the more frustrated attempts. The Ethernet protocol has

many physical embodiments. These can embrace any topology, type of cable, or

speed. The IEEE 802.3 specification defines several of these, and assigns a code

name to each. Today's most popular Ethernet implementations operate at a raw

speed of 10 MHz. That is, the clock frequency of the signals on the Ethernet (or

IEEE 802.3) wire is 10 MHz. Actual throughput is lower because packets cannot

occupy the full bandwidth of the Ethernet system. Moreover, every packet contains

formatting and address data that steals space that could be used for data. Today's

four most popular IEEE 802.3 implementations are 10Base-5, 10Base-2, 10Base-T,

and 100Base-T. Although daunting at first look, you can remember the names as

codes: The first number indicates the operating speed of the system in megahertz;

the central word "Base" indicates that Ethernet protocol is the basis of the system;

 55

and the final character designates the wire used for the system. The final digit

(when numerical) refers to the distance in hundreds of feet the network can stretch,

but, as a practical matter, also specifies the type of cable used. Coincidentally, the

number also describes the diameter of the cable; under the 10 MHz 802.3 standard,

the "5" stands for a thick coaxial cable that's about one-half (.5) inch in diameter;

the "2" refers to a thinner coaxial cable about .2 inch in diameter; the "T" indicates

twisted pair wiring like that used by telephone systems. Other differences besides

cable type separate these Ethernet schemes. The 10Base-5 and 10Base-2 use a

linear topology; 10Base-T and 100Base-T are built in a star configuration. The

three IEEE 802.3 systems with the "10" prefix operate at the same 10 MHz speed

using the same Ethernet protocol, so a single network can tie together all three

technologies without the need for such complications as protocol converters (or

gateways). In typical complex installations, thick coaxial cable links far-flung

workgroups, each of which is tied together locally with a 10Base-T hub. This

flexibility makes IEEE 802.3 today's leading networking choice. The 100Base-T

system operates at 100 MHz, yielding higher performance consistent with

transferring multimedia and other data intensive applications across the network.

Its speed has made it the system of choice in most new installations. Actually

100Base-T isn't a single system but a family of siblings each designed for different

wiring environments. 100Base-TX is the purest implementation - and the most

demanding. It requires Class 5 wiring, shielded twisted pair designed for data

applications. In return for the cost of the high class wiring, it permits full duplex

operation so any network node can both send and receive data simultaneously.

100Base-T4 works with shielded or unshielded voice-grade wiring, Classes 3 and

4, but only allows for half-duplex operations. 100Base-FX uses the same timing

and protocol as the 100Base-T systems but operates across fiber optic cables

instead of copper twisted pair wiring. It also allows full duplex operation. StarLAN

is the Ethernet derivative developed by AT&T and sanctioned by the IEEE as

1Base-5 in the 802.3 specification. As you would expect from a networking system

designed by a telephone company, it was designed to use unshielded twisted pair

wiring with a star configuration (although nodes can also be daisy chained) that can

take advantage of standard office telephone wiring (where all the wires from a

given office or floor converge in a wiring closet). The speed of StarLAN was set at

1 MHz to assure reliable operation over the inexpensive wiring the system used.

Because 10Base-T effectively fills the same wiring niche with 10 times the speed,

StarLAN has fallen out of favor.

The new standard developments are concentrated to increase speed to

Gigabits and is called Gigabit Ethernet. The Gigabit speed is obtained including on

copper media and the Gigabit Ethernet 10/100/1000 Mbps are in current use (fiber

optic channels). The 10 Gigabit Ethernet (10GbE) is the most recent (2006) and

fastest Ethernet standard, including over twisted pair copper wires 10GBase-T,

with 10 gigabit/second on unshielded twisted pairs and maximum 100-150 meters

per segment. The new target is 100 gigabit Ethernet (100GbE) and the IEEE teams

start study and develop in November 2006.

 56

Token Ring. Another way to handle packets across a network is a concept called

token passing. In this scheme, the token is a coded electronic signal used to control

network access. The token is a small frame whose structure contains three fields

(one byte each): - start delimiter, that alerts each station the arrival of a token (or

data/command frame); - access control, contains information about priority (3

bits), reservation (3 bits), type (1 bit) and monitor (1 bit); - end delimiter, signals

the end of the token (or data/command frame).

IBM originated the most popular form of this protocol, which after further

development, was sanctioned by the IEEE as its 802.5 standard. Because this

standard requires a ring topology, it is commonly called Token Ring networking.

Although once thought the most formidable competitor to Ethernet, it is now

chiefly used only in large corporations.

Other networking systems such as FDDI (see the "FDDI" section that

follows) use a similar token passing protocol.

In a token passing system, all PCs remain silent until given permission to

talk on the network line. They get permission by receiving the token (a small frame

of information). A single token circulates around the entire network, passed from

PC to PC in a closed loop that forms a ring topology. If a PC receives the token and

has no packets to give to the network to deliver, it simply passes along the token to

the next PC in the ring. If, however, the PC has a packet to send, it links the packet

to the token along with the address of the destination PC (or server). All the PCs

around the ring then pass this token and packet along until it reaches its destination.

The receiving PC strips off the data and puts the token back on the network, tagged

to indicate that the target PC has received its packet. The remaining PCs in the

network pass the token around until it reaches the original sending PC. The

originating PC removes the tag and passes the token along the network to enable

another PC to send a packet. This token passing method offers two chief benefits:

reliability and guaranteed access. Because the token circulates back to the sending

PC, it gives a confirmation that the packet was properly received by the recipient.

The protocol also assures that the PC next in line after the sending PC will always

be the next one to get the token to enable communication. As the token circulates,

it allows each PC to use the network so that the network operates in a deterministic

way, which means that it is possible to calculate the maximum time that will pass

before any end station will be capable of transmitting (not as CSMA/CD based

networks that are undetermined). The token must go all the way around the ring—

and give every other PC a chance to use the network—before it returns to any

given PC to enable it to use the network again. Access to the network is guaranteed

even when network traffic is heavy. No PC can get locked out of the network

because of a run of bad luck in trying to gain access.

The original Token Ring specification called for operation at 4 MHz. A

revision to the standard allows for operation at 16 MHz. The specification

originally required the use of a special four-wire shield twisted pair cabling, but

current standards enable several types of cabling, including unshielded twisted pair

wires.

 57

The frame structure (token and data) is similar to the following:

Field
Abbr.

Field Name Field Length
(octets)

SSD Start-of-Sequence Delimiter Media dependant

AC Access Control 1

FC Frame Control 1

DA Destination Address 6

SA Source Address 6

RI Routing Information 0 to 30

INFO Information 0 or more

FCS Frame Check Sequence 4

ET/ED End Transit/Ending Delimiter 1

ESD/FS End-of-Sequence Delimiter/Frame Status Media dependant

IFG Interframe Gap Media dependant
Source: IEEE 802.5v-2001 (Amendment to IEEE Std 802.5, 1998 Edition and

IEEE Stds 802.5r and 802.5j, 1998 Edition)

Asynchronous Transfer Mode (ATM). One of the darling technologies of new

networking, Asynchronous Transfer Mode or ATM is fundamentally different from

other networking systems. It is a switched technology rather than a shared bus.

Instead of broadcasting down a wire, a sending PC sets up a requested path to the

destination specifying various attributes of the connection, including its speed. The

switch need not be physical. In fact, ATM is independent of the underlying

physical wiring and works with almost any physical network architecture from

twisted pair to fiber optical. Its performance depends on the underlying physical

implementation, but its switched design assures the full bandwidth of the medium

for the duration of each connection. Instead of packets, ATM data takes the form of

cells. The length of each cell is fixed at 53 bytes. The first five (header) serve as an

address. The remaining 48 are the payload, the data the packet transfers. The

payload can be any kind of data—database entries, audio, video, or whatever. The

small, fixed-length cells are well suited to transferring voice and video traffic

because such traffic is intolerant of delays that result from having to wait for a

large data packet to download, among other things. ATM is independent of data

types and carries any and all bytes with exactly the same dispatch. ATM is built

from a layered structure. It takes the form of three layers at the bottom of the

network implementation—the physical layer, the ATM layer, and the adaptation

layer. The physical layer controls how ATM connects with the overall network

wiring. It defines both the electrical characteristic of the connection and the actual

network interface. The ATM layer takes care of addressing and routing. It adds the

 58

five-byte address header to each data cell to assure that the payload travels to the

right destination. The adaptation layer takes the data supplied from higher up the

network hierarchy and divides it into the 48-byte payload that will fit into each cell.

ATM is part of a network. By itself it does not make a network. Because of its high

speed potential and versatility, it is becoming popular in large businesses where it

neatly sandwiches between other network standards.

An ATM network is made up of an ATM switch and ATM endpoints. An

ATM switch is responsible for cell transit through an ATM network. The

job of an ATM switch is well defined: It accepts the incoming cell from an

ATM endpoint or another ATM switch. It then reads and updates the cell

header information and quickly switches the cell to an output interface

toward its destination. An ATM endpoint (or end system) contains an

ATM network interface adapter. Examples of ATM endpoints are

workstations, routers, digital service units (DSUs), LAN switches, and

video coder-decoders (CODECs).

FDDI. Although many publications use the acronym FDDI to refer to any network

using optical fibers as the transmission medium, it actually refers to an

international networking standard sanctioned by the American National Standards

Institute and the International Standards Organization. The initials stand for Fiber

Distributed Data Interface, a logical ring standard for data transmission in LAN’s

that can extend in range up to 200 Km (124 miles). The standard is based on a dual

counter rotating fiber optic ring topology (see paragraph 1.4 FDDI, figure 1.16 a

and b), one for normal data transmission and another one for possible backup in

case the primary ring fails. If the secondary ring is not used for backup purposes it

can be used for data transmission too extending in that way the bandwidth to 200

MHz. The FDDI standard permits the connection of up to 1000 of PCs or other

nodes with a distance up to 2 to 3 kilometers between PCs and an entire spread up

to 200 kilometers. FDDI is frequently used as high-speed backbone technology.

The logical structure of the frame and token for FDDI is similar to those of

token ring and contains the fields:
 16 2 2 4/12 4/12 0-9000 8 1/2 3

Frame PA SD FC DA SA Info FCS ED FS

 FCS coverage
 16 2 2 1/2

Token PA SD FC ED

Field Name Description

PA Preamble 16 (or more) IDLE symbols. Causes line signal
changes every bit to ensure receiver clock
synchronization at the beginning of a frame.

SD Start Delimiter the 2 symbols J and K are used to show the
start of the frame and also to allow
interpretation of correct symbol boundaries.

 59

FC Frame Control symbols indicating whether or not this is an
information frame or a MAC frame (e.g. the
token), with some additional control information
for the station identified by the DA.

DA Destination address 4 or 12 symbols identifying the destination
station. 16 symbols are used for a full 48-bit
MAC address, 4 symbols for a 16-bit local
addressing mechanism. If the first bit of the
(decoded) address is a 1 then this identifies a
group address.

SA Source Address 4 or 12 symbols identifying the source station.

Info Information his is usually set to about 9000 symbols (4500
decoded octets) in length and is determined by
the maximum length of time that a station can
hold the token.

FCS Frame Check
Sequence

8 symbols containing a 32-bit CRC. The FCS
covers the fields FC, DA, SA, information and
FCS.

ED End Delimiter 1 or 2 T control symbols.

FS Frame Status 3 symbols which are a combination of R and S
symbols indicating if the frame has been seen
by the destination station and if it has been
copied by the destination station.

Frame Relay. Is a high-performance WAN protocol that operates at the physical

and data link layers of the OSI reference model. Designed initially for use across

Integrated Services Digital Network (ISDN) interfaces it is used today over a

variety of other network interfaces. Frame Relay is a packet-switched technology

that enable end stations to dynamically share the network medium and the available

bandwidth. The following two techniques are used in packet-switching technology:

 Variable-length packets - that are used for more efficient and flexible data

transfers. These packets are switched between the various segments in the

network until the destination is reached;

 Statistical multiplexing techniques - control network access in the packet-

switched network. The advantage of this technique is that it accommodates

more flexibility and more efficient use of bandwidth. Frame Relay is

strictly a Layer 2 protocol suite and this enables it to offer higher

performance and greater transmission efficiency making it suitable for

current WAN applications, such as LAN interconnection.

Devices attached to a Frame Relay WAN fall into the following two general

categories:

 Data terminal equipment (DTE) - generally are considered to be

terminating equipment for a specific network and typically are located to a

customer such as personal computers, routers, and bridges.

 Data circuit-terminating equipment (DCE) - are carrier-owned

internetworking devices with the purpose to provide clocking and

 60

switching services in a network, and now they are the devices that transmit

data through the WAN.

Frame Relay provides connection-oriented data link layer communication.

Frame Relay virtual circuit service allows creating logical connection between two

data terminal equipment (DTE) devices across a Frame Relay packet-switched

network (PSN). Virtual circuits provide a bidirectional communication path from

one DTE device to another and are uniquely identified by a data-link connection

identifier (DLCI). A number of virtual circuits can be multiplexed into a single

physical circuit for transmission across the network. Frame Relay virtual circuits

fall into two categories:

- switched virtual circuits (SVCs) - temporary connections used in

situations requiring only sporadic data transfer between DTE devices

across the Frame Relay network. SVCs operate in one of the four

operational states: call setup, data transfer, idle, and call termination;

- permanent virtual circuits (PVCs) - permanently established connections

that are used for frequent and consistent data transfers between DTE

devices across the Frame Relay network. PVCs operates with only two

states data transfer and idle.

AppleTalk. Apple Computer developed its own networking scheme for its

Macintosh computers. Called AppleTalk, the network is built around an Apple-

developed hardware implementation that Apple called LocalTalk. A LocalTalk can

have maximum 32 active nodes and maximum 300 m a cable segment. Multiple

LocalTalk can be connected together by intermediate of routers or other

interconnecting devices . In operation, LocalTalk is similar to Ethernet in that it

uses probabilistic access with Carrier Sensing, Multiple Access (CSMA)

technology. Instead of after the fact collision detection, however, LocalTalk uses

collision avoidance. Originally designed for shielded twisted pair cable, many

LocalTalk networks use unshielded twisted pair telephone wiring. The LocalTalk

system is slow, however, with a communication speed of 230.4 KHz (that's about

one quarter megahertz).

Arcnet. Another token passing network system, Arcnet, pre-dates IEEE 802.5

Token Ring. Arcnet was developed in 1977 by Datapoint Corporation. In an Arcnet

system, each PC is assigned an eight-bit address from 1 to 255. The token is passed

from one PC to the next in numerical order. Each PC codes the token signal with

the value of the next address in the network, the network automatically configuring

itself so that only active address numbers are used. The number is broadcast on the

network so that all PCs receive every token, but only the one with the right address

can use it. If the PC receiving the token has a packet to send, it is then allowed to

send out the packet. When the packet is received, an acknowledgment is sent back

to the originating PC. The PC then passes the token to the next highest address. If

the PC that receives the token has no packets to send, it simply changes the address

in the token to the next higher value and broadcasts the token. Because the token is

broadcast, the Arcnet system does not require a ring. Instead it uses a simple bus

topology that includes star-like hubs. Arcnet hubs are either active or passive.

 61

Active hubs amplify the Arcnet signal and act as distribution amplifiers to any

number of ports (typically eight). Passive hubs act like simple signal splitters and

typically connect up to four PCs. The basic Arcnet system uses coaxial cable.

Compared to today's Ethernet systems, it is slow, operating at 2.5 megahertz.

Zero-Slot LANs. When you need to connect only a few PCs and you don't care

about speed, you have an alternative in several proprietary systems that are lumped

together as Zero-Slot LANs. These earn their name from their capability to give

you a network connection without requiring you to fill an expansion slot in your

PC with a network host adapter. Instead of a host adapter, most Zero-Slot LANs

use a port already built into most PCs, the serial port. Protocols and topologies of

Zero-Slot LANs vary with each manufacturer's implementation. Some are built as

star-like systems with centralized hubs; others are connected as buses. Nearly all

use twisted pair wiring, although some need only three connections and others use

up to eight. The former take advantage of a protocol derived from Ethernet; the

latter use the handshaking signals in the serial port for hardware arbitration of

access to the network. The one factor shared by all Zero-Slot LANs is low speed.

All are constrained by the maximum speed of the basic PC serial port, which is

115,200 bits per second (or about one-tenth megahertz). Lower speeds are often

necessary with long reaches of cable because Zero-Slot LAN signals are

particularly prone to interference. Serial ports provide only single-ended signals,

which are not able to cancel induced noise and interference, as is possible with

balanced signals.

1.10 Understanding Internetwork Tools

 Now that you conceptually understand what internetwork devices do, we're

going to explain what bridges and routers do and how they work from a technical

perspective.

How bridges and routers work

 With our discussion of communications models and protocols as a

background, let's take a second (and more technical) look at bridges and routers to

examine how they provide network connection services.

 Bridges come in three basic types. Regardless of type, however, all bridges

provide network connection at the data link layer, as shown in figure 1.32.

Transparent bridge

 The first type of bridge, a transparent bridge, provides network connection to

LANs that employ identical protocols at the data link and physical layers. Transparent

bridges are so named because their presence and operation are transparent to

network hosts. When transparent bridges are powered on, they learn the

workstation locations by analyzing the source address of incoming frames from all

attached networks. For example, if a bridge sees a frame arrive on port 1 from Host

A, the bridge concludes that Host A can be reached through the segment connected

 62

to port 1. Transparent bridges place no burden on devices. Devices take no part in the

route discovery or selection process. From the device's point of view, it appears that

all devices reside on a single extended network, with each device identified by a

unique address.

 Using figure 1.32 as an example, transparent bridge processing can be

summarized as follows:

1
o
. The bridge reads the data link layer destination addresses of all messages

transmitted by devices on LAN A;

2
o
. The bridge ignores all messages addressed to devices on LAN A;

3
o
. The bridge accepts all messages addressed to devices on LAN B and, using the

physical and data link protocols common to both networks, relays these messages to

LAN B;

4
o
. The bridge performs identical functions for all messages transmitted on LAN B.

 Obviously, such processing requires that the bridge acquire some knowledge

of the location of devices. While this information could be manually configured, most

transparent bridges provide a learning function that acquires device addresses. The

bridge learns addresses by reading the data link source address of each message that it

receives. As the bridge receives messages, it builds and updates a database (called the

"forwarding table") that lists each data link source address, the bridge connection on

which the address was seen, and a timer value that indicates the age of the

observation.

 The bridge relays messages on the basis of entries in its forwarding table.

When the bridge reads a message, it compares the message's data link destination

address with addresses found in the forwarding table. If the bridge fails to find a

match, it relays the message on all bridge connections (except the connection on

which the message was received). This action of relaying a message on multiple

connections is called "flooding".

Figure 1.32 The Data-Link connection over a bridge

 63

 If the bridge finds a match between the destination address and a forwarding

table entry, it compares the bridge connection on which the message was seen with

the bridge connection associated with the table entry. Identical connection values

indicate that the source and destination devices are located on the same network.

Because relay is not necessary in this case, the bridge ignores the message.

 Different connections indicate that the source and destination devices are not

located on the same physical network. In this instance, the bridge forwards the

message based on the connection found in the forwarding table.

Translating bridge

 A translating bridge is a specialized from of transparent bridge. It provides

network connection services to LANs that employ different protocols at the physical

and data link layers. Translational bridging provides translation between the

formats and transit principles of different media types (usually Ethernet and Token

Ring). Figure 1.32 shows a translating bridge that connects adjacent Ethernet and

Token Ring LANs. A translating bridge provides connection services by

manipulating the "envelopes" associated with each type of LAN. Processing

performed by a translating bridge is relatively straightforward, because the Ethernet,

Token Ring and FDDI envelopes are somewhat similar. Each LAN type, however,

sends messages of different lengths. Because a translating bridge cannot fragment

messages, each LAN device must be configured to transmit messages of the

supportable length.

 Using figure 1.33 as an example, translating bridge processing can be

summarized as follows:

1
o
. The translating bridge, using the physical and data link layer protocols employed

by LAN A (the Token Ring), reads the data link layer destination addresses of all

messages transmitted by devices on LAN A;

2
o
. The translating bridge ignores

all messages addressed to devices

on LAN A;

3
o
. The translating bridge accepts

all messages addressed to devices

on LAN B (the Ethernet) and, using

the physical and data link protocols

employed by LAN B, relays these

messages to LAN B;

4
o
. The translating bridge performs

identical functions for all messages

transmitted on LAN B.

Encapsulating bridge
 An encapsulating bridge is generally associated with so-called "backbone"

topologies. Figure 1.34 depicts such a topology with four Ethernets linked by a high-

speed FDDI backbone. As shown in the figure, an encapsulating bridge provides

Figure 1.33 Translating bridge principle

Translating
Bridge

 64

connections to LANs that use identical physical and data link layer protocols. The

internetwork connection (the backbone) is provided by a network that uses different

physical and data link layer protocols.

 Unlike translating bridges, which manipulate the actual message envelope,

encapsulating bridges place received messages within a backbone-specific envelope

(thus, the term "encapsulating") and forwards the encapsulated massage to other

bridges for eventual delivery to the message recipient.

 Using figure 1.34 as an example, a message from a device on LAN A to a

device on LAN B is processed as follows:

1
o
. Bridge_1, using the physical and data link layer protocols employed by LAN A

(an Ethernet), reads the data link layer destination addresses of all messages

transmitted by devices on LAN A;

2
o
. Bridge_1 ignores all messages addressed to devices on LAN A;

3
o
. Bridge_1 accepts all messages addressed to devices on other LANs, places these

messages within an FDDI-specific envelope addressed to all bridges (such a collective

address is called a "multicast address"), and sends this envelope across the FDDI

backbone;

4
o
. Bridge_2 receives the message, removes the outer envelope, and checks the

destination data link address. Since the address is not local, Bridge_2 ignores the

message;

5
o
. Bridge_3 receives the message, removes the outer envelope, and checks the

destination data link address. Since the address is local, Bridge_3 uses Ethernet

physical and data link layer parameters to forward the message to the destination

device;

Figure 1.34 Encapsulating bridge

 65

6
o
. Bridge_4 receives the message, removes the outer envelope, and checks the

destination data link address. Since the address is not local, Bridge_4 ignores the

message;

7
o
. Bridge_1 strips the encapsulated message from the FDDI backbone.

Source routing bridges

 The term source routing was coined by IBM to describe a method of bridging

frames across Token Ring networks. Source routing requires that the message source

(not the bridge) supply the information needed to deliver a message to its intended

recipient. Source routing bridges (SRBs) are so named because they assume that the

complete source-to-destination route is placed in all inter-LAN frames sent by the

source. SRBs store and forward the frames as indicated by the route appearing in

the appropriate frame field. An SRB network contains LANs and bridges.

 Within a source routing network, bridges need maintain forwarding tables.

Rather, they make the decision to forward or to drop a message solely on the basis of

data contained within the message envelope. To implement such a scheme, each

source routing device determines the route to a destination through a process called

"route discovery".

 Route discovery can be accomplished in several ways. One way (somewhat

simplified) goes something like this. Refer to figure 1.35, which shows a network

topology within which five Token Rings are linked by three source routing bridges.

To illustrate route discovery, assume that a device on LAN_1 has a message to

transmit to a device on LAN_5:

- The LAN_1 device initiates route discovery by sending an "explorer" packet.

Explorer packets use a unique envelope which is recognized by a source

Figure 1.35 Source routing network

 66

routing bridge;

- On receiving an explorer packet, each source routing bridge enters the

connection on which the packet was received and its own name in a section of

the envelope (called the "routing information field"). The bridge then floods

the packet to all its connections except the one on which the packet was

received. As a consequence, multiple copies of the same explorer message

can appear on a LAN, and explorer recipient receives multiple copies of the

message (one copy for each possible path from source to destination);

- Each received explorer message contains a sequenced list of

connection/bridge designators, which traces the message's path through the

source routed network. On receiving the explorer messages, the LAN_5

recipient chooses one of the available routes (perhaps the fastest or the most

direct) and sends a response to the LAN_1 originator. This response lists a

specific route (composed of intervening bridges and LAN connections)

between source and destination;

- After "discovering" the route, the LAN_1 device stores it in memory and uses

it whenever it has messages to send to the LAN_5 device. These messages

are enclosed in a different type of envelope recognized by source routing

bridges. Bridges receiving such an envelope simply scan the list of

connections and bridges to obtain forwarding instructions.

Routers

Routing is the act of moving information across an internetwork from a

source to a destination, and along the way, at least one intermediate node typically

is encountered. Routing involves two basic activities: determining optimal routing

paths and transporting information groups (typically called packets) through an

internetwork.

 Compared

with bridges,

which provide

connection services

at the data link

layer (layer 2),

routers provide

connection services

at the network

layer (layer 3,

shown in figure

1.36). This

distinction

provides routing

and bridging with

different

information to use

Figure 1.36 Network layer service in a router

 67

in the process of moving information from source to destination, so the two

functions accomplish their tasks in different ways. Connected networks may use

different protocols at both the data link and physical layers.

 In the case of two devices communicating through one a series of intervening

networks, the network layer provides the information required to switch and route data

to its intended destination. A router offers more sophisticated and more complex

services than those offered by a bridge. It actively selects the path between source and

destination nodes, basing its selection on factors such as transmission cost, transit

delay, network congestion, or distance between message source and destination.

Distance is usually measured in terms of "hop counts", the number of routes between

a source and destination.

 Unlike most bridges, whose services are transparent, a router's services must

be explicitly requested by a device. A router processes only those messages that are

addressed to it by other devices.

 As an introduction to routing, let's build a network - one which uses no

specific routing protocols, but which does demonstrate the "logic" of routing. To start,

take a look at the internetwork in figure 1.1, which shows a Linear LAN and a Token

Ring connected by a router. Each LAN is identified by a unique LAN address (in OSI

terms, a "network layer address"), and each device on a LAN is identified by an

address unique to the LAN (in OSI terms a "data link layer address").

Routing protocols use metrics to evaluate what path will be the best for a packet to

travel. A metric is a standard of measurement, such as path bandwidth, that is used

by routing algorithms to determine the optimal path to a destination. To aid the

process of path determination, routing algorithms initialize and maintain routing

tables, which contain route information. Route information varies depending on

the routing algorithm used. Routing algorithms fill routing tables with a variety of

information. Destination/next hop associations tell a router that a particular

destination can be reached optimally by sending the packet to a particular router

representing the “next hop” on the way to the final destination. When a router

receives an incoming packet, it checks the destination address and attempts to

associate this address with a next hop.

Routing tables also can contain other information, such as data about the

desirability of a path. Routers compare metrics to determine optimal routes, and

these metrics differ depending on the design of the routing algorithm used. A

variety of common metrics used such as:

- path length, the most common;

- reliability, described as dependability of each network link;

- delay, length of time required to move a packet from source to destination

through the internetwork;

- bandwidth, available traffic capacity to a link;

- load, the degree to which a network resource (such as a router) is busy;

- communication cost.

Routers communicate with one another and maintain their routing tables

through the transmission of a variety of messages. The routing update message is

one such message that generally consists of all or a portion of a routing table. By

 68

analyzing routing updates from all other routers, a router can build a detailed

picture of network topology. A link-state advertisement, another example of a

message sent between routers, informs other routers of the state of the sender’s

links. Link information also can be used to build a complete picture of network

topology to enable routers to determine optimal routes to network destinations.

 69

1 INTRODUCTION TO COMPUTER NETWORKS ………….15

1.1 LAN's & WAN's .. 15

1.2 Some network and internetwork components 17

File Server .. 17

Workstation .. 18

Topologies and Protocol .. 18

Repeaters .. 20

Hubs (concentrators) .. 20

Bridges ... 21

Switches ... 21

Routers ... 22

Gateways .. 22

1.3 The communication process ... 23

1.4 Communication medium .. 26

1.5 Topologies and networks ... 28

Linear (bus) topology ... 28

Distributed Star Topology .. 29

Logical Ring Topology .. 30

FDDI networks ... 31

Complex LANs .. 31

Wide Area Network topologies .. 32

Storage Area Network .. 35

Wireless LAN (WLAN) ... 35

1.6 Cooperative processing .. 36

Client-Server .. 36

Peer-to-Peer .. 37

1.7 Communication models ... 39

OSI MODEL .. 40

IEEE MODEL .. 44

1.8 Communications protocols... 45

1.9 Standards .. 53

Ethernet .. 53

Token Ring ... 56

Asynchronous Transfer Mode (ATM) ... 57

FDDI .. 58

Frame Relay ... 59

AppleTalk ... 60

Arcnet ... 60

Zero-Slot LANs .. 61

 70

1.10 Understanding Internetwork Tools .. 61

How bridges and routers work ... 61

Transparent bridge ... 61

Translating bridge .. 63

Source routing bridges ... 65

Routers ... 66

2 Internet – ARCHITECTURE, OFFERED SERVICES,

COMMUNICATION AND NAVIGATION

2.1 How WANs (and Internet) are organized

The WANs (and the most general one, Internet) are composed from (figure 2.1):

- at the lower level

LANs, MANs etc

or in other words

sub-networks

(Si,j);

- at the next up the

sub-networks are

linked together, by

using inter-network

devices, in areas

(Ak,l);

- the areas are linked

together, by means

of routers, into

domains (Dm);

- all connected

domains (by means

of routers and

using a packet or

circuit switching

transmission

technology) form

the WAN.

The Internet is

not a single network,

but a worldwide

collection of loosely

connected networks that are accessible by individual computer hosts in a variety of

ways, including gateways, routers, dial-up connections, and Internet Service

Providers (ISP). The Internet is easily accessible to anyone with a computer and a

network connection. Individuals and organizations worldwide can reach any point

on the network without regard to national or geographic boundaries or time of day.

The main reason most people buy a modem—or an entire PC, for that

matter—is to connect to the Internet.

Figure 2.1 The WAN (Internet) architecture

 70

The Internet is built using hardware and software. Both hardware and

software serves as a means to access what you really want: the information that the

Internet can bring to your personal computer. Without the right hardware and

software, you could not connect to the Internet, but having the hardware alone

won't get you to the World Wide Web.

The Internet has two aspects, physical and logical and it can be viewed as a

collection of physical and logical pieces that are tied together physically and

logically:

- The physical aspect is a collection of wires, optical fibers, and microwave

radio links and other devices that carry digital signals between computers.

The combination of connections forms a redundant network. Computers

are linked to one another in a web that provides multiple signal paths

between any two machines;

- The logical aspect is a set of standards for the signals that travel through

that network. The Internet uses various protocols depending on what kind

of data is being transferred. The languages that allow computers to talk to

another are called protocols. The protocol is the method in which the network

interface cards (NIC) communicate over the topology. Protocols are

essentially electronic rules of behavior that allow the network interface cards

to initiate and maintain communication. These rules are controlled by the

protocol engine that:

 accepts raw data from the sending source;

 assembles and addresses packets;

 attaches any necessary information such as internet routing;

 places the packets onto the communication channel.

 The Internet was not designed to link computers but to tie together

computer networks and, consequently, to allow data to flow between networks. The

chief protocol and the defining standard of the Internet is TCP/IP (Transmission

Control Protocol/Internet Protocol). Even if you only have a single personal

computer when you connect with the Internet you must run a network protocol that

allows your computer logically communicate to others. The common way to make

an individual personal computer a physical part of Internet is to use a modem.

Internet allows communication between millions of connected computers world-

wide. Information is transmitted from client PCs (individuals or companies) whose

users request services to server computers (figure 2.2) that hold information and

host business applications that deliver the services in response to request.
The client PCs within homes or business are connected to Internet via local

Internet Service Provider (ISP) which, in turn, are linked to larger ISPs with

connection to the major national and international infrastructure or backbone (high-

speed data transport channels).

 The World Wide Web (or web or www, for short) is a medium for

publishing information on the Internet in an easy-to-use form. The medium is

based on a standard document format known as HTML (Hypertext markup

language). The www represented by all the interlinked documents on the Internet

 71

made up of pages containing text, graphics and other elements. The web is

accessed using a web browser that enables user to navigate through the information

available and display any page of interest

 The transmission

of information across the

Internet is often described

as being based around

either pull or push

technology:

- Pull technology describes

information sent out as a

result of receiving specific

request, for example a

page is delivered to a web

browsers in response to a

specific request from the

user;

- Push technology

describes information that

is sent without a user’s

specifically requesting it,

for example a customized

news service received by subscribing to a channel or e-mail.

Client/Server Technology. The Internet is based on client/server technology

(figure 2.3). All data, including e-mail messages and Web pages, are stored on

server. The individuals access that resources and the net control through client

applications, such as Web browser. A client uses the Internet to request information

or services from a distant computer and the server sends the request information

back to the client via Internet. The client platforms include a variety of devices and

information appliance. An information appliance is a device (such as Internet-

enabled cell phones, for example) that has been customized to perform, in a user

friendly way, a few specialized computing tasks. In the following table are listed

some common Internet platforms:

Device Description
PC General purpose computing platform that can perform many

different tasks. The performed tasks can be complex to use

Net PC Network computer with minimal local storage and
processing capabilities and designed to use software and
services delivered over the networks and the Internet

MID Mobile Internet Device is a highly portable Internet-
connected device both business and individual consumers
designed as a pocket-size solution for access information
on-the-go

Smart Phone Provide voice communication and in addition has a small

Figure 2.2 Some infrastructure components of Internet

 72

screen and keyboard for browsing the Web and exchanging
e-mail

Game
machine

Game machines provided with a modem, keyboard, and
capabilities to function as Web access terminal

PDA Wireless handheld personal digital assistant (PDA) with e-
mail and Internet services. Typical functions for PDAs
include address book, appointment scheduler, calculator,
clock, expense tracking, currency conversions, alarm etc.
Sophisticated PDA can include communications,
spreadsheet and word processing applications

E-mail
machine

Telnet with keyboard that provides textual e-mail
capabilities (it requires linking to an e-mail service)

Set-top box Is an important component of the Interactive digital TV
system and is used to receive and decode message (from
cable, satellite dish, aerial antenna etc) and then display on
a conventional TV. It provide also surfing and e-mail
capabilities using a television set and wireless keyboard (or
remote control). The set-top box includes a modem that is
used to pass back selections made on interactive channels
(such as the interactive shopping channels, for example) .

In the right side of the figure we consider the back end systems (or back

office) that are in use by enterprises. The enterprise software consists of a set of

interdependent modules for applications such as sales and distribution, financial

and accounting, investment management, production planning, plant maintenance

and human resources etc that allows data to be used by multiple functions and

business processes for more precise coordination and control. The modules can

communicate with each other directly or by sharing common repository data.

Contemporary enterprise system uses client/server computing architecture.

In the companies in operation before PC and Internet appears we can found

many existing legacy mainframe applications that are essential to daily operations

and very risky to change. In general these ones are incompatible with the new

applications developed for PC platforms. The legacy systems can be made more

useful if their information and business logic can be integrated with other

applications. One way to integrate various legacy systems is by using special

software called middleware. Middleware is a special software which allows

Figure 2.3 Client/server computing on the Internet

 73

different software applications to communicate (it allows and assists data transfers

between incompatible systems similarly to the way the network gateway operates

in Internet).

Another way to integrate the existing systems is the use of an enterprise

application integration software (EAI). This kind of software is dedicated to tie

together multiple applications to support enterprise integration. The software

allows system builders to model their business process graphically and define the

rules that applications should follow to make this process work. The software then

generates the under-laying program instructions to link existing applications to

each other to support those processes.

Cloud technologies. For Cloud computing we don’t have yet a definition

unanimously accepted. Some of these definitions are:

a) A massive network of servers or even individual PCs interconnected in a grid.

The computers run in parallel, combining the resources of each to generate

supercomputing-like power. [Google]

b) A cloud is a pool of virtualized computer resources that hosts a variety of

different workloads and allow them to be deployed and scaled-out through the

rapid provisioning of virtual machines or physical machines; supports redundant,

self-recovering, highly scalable programming models and resource usage

monitoring in real time to enable rebalancing of allocation when needed.

c) “Cloud computing is a style of computing where massively scalable IT-related

capabilities are provided as a service across the Internet to multiple external

customers [Gartner].”

d) According to [LCT] “Cloud computing is a paradigm that focuses on sharing

data and computations over a scalable network of nodes.” The computing cloud is a

massive network of nodes having at least a two dimensional scalability:

- horizontal - as the ability to connect and integrate multiple clouds to work

as a single logical cloud;

- vertical - as the ability to improve the capacity of a cloud by enhancing

individual existing nodes in the cloud.

According to [IBM-09] Cloud computing is:

- a business delivery model by which hardware, software and network

resources are optimally leveraged to provide innovative services over the Web, and

servers are provisioned in accordance with the logical needs of the service using

advanced, automated tools. The business model of a cloud facilitates more efficient

use of existing resources.

- an infrastructure management methodology that enables IT organizations

to manage large numbers of highly virtualized resources as a single large resource.

It also allows IT organizations to massively increase their data center resources

without significantly increasing the number of people traditionally required to

maintain that increase.

The cloud enables the service creators, program administrators and others

to use these services via a Web-based interface that abstracts away the complexity

 74

of the underlying dynamic infrastructure. The cloud also provides a user interface

that allows both the user and the IT administrator to easily manage the provisioned

resources through the life cycle of the service request. The cloud user disposes of

self-service functions (that can be performed 24 hours a day and take only minutes

to perform) to add/remove servers, change the installed software, increase/decrease

the allocated processing power, memory or storage and even can start, stop and

restart servers.

Figure 2.4 gives a image about how the cloud build and how user realizes

the connection to cloud computing together with a closer look to the user (what is

before connection) and to a layered approach of the cloud. The layers in the

architecture are defined as categories of services:

- Storage Cloud - storage services;

- Data Cloud - data management services (record, column, or object-based);

- Compute Cloud - computational services;

- Application - generally SaaS.

The user access the cloud, for the services provisioned by the vendor from

a browser application program running anywhere in the world, by intermediate of

his user interface and by using the services of the system management.

The cloud computing is a logical corollary and consequence of many

ancestors: grid computing, utility computing and Software-as-a-Service, as shown

in figure 2.5.

Figure 2.4 Connecting to cloud

 75

The cloud is easy to program than distributed or grid computing.

The clouds can be specialized such as cloud storage, cloud services,

calculation cloud, etc. Related to cloud computing we have the following concepts:

- Cloud storage - data are stored on a virtual server having a dynamically

location perceived by the user as a static one.

- Cloud services - any web application or service offered via “cloud

computing” is called “Cloud service”. The user runs the application stored

in cloud by intermediate of his web browser. If the user computer fails this

fact do not affect both application and data. By storing the documents in

the cloud is possible that all users granted to access and manipulate the

document to work simultaneously as a team on this.

- Software-as-a-Service (SaaS) - a sole application is delivered to thousand

of users by intermediate of vendor servers. Each organization deserved by

vendor is called tenant, and the architecture of this arrangement is called

Grid Computing Utility Computing Software-as-a-
Service

Cloud
Computing

- Solving large
problems with
parallel computing
- Made
mainstream by
Globus Alliance
(1980)

- Offering
computing
resources as a
metered service
- Introduced in
late of 1990

- Network-based
subscriptions to
applications
- Gained
momentum in
2001

- Next-
generation
Internet
computing
- Next-
generation data-
centers

Usually a grid is a

cluster of servers on

which a large task

could be divided

into smaller tasks to

run in parallel. The

applications must

conform to the grid

software interfaces.

On-demand

computing
 Computing and

extended IT and

business

resources, such as

servers, storage,

network,

applications and

processes, can be

dynamically

shaped or carved

out from the

underlying

hardware

infrastructure and

made available to

a workload.

Figure 2.5 Connecting to cloud (Adapted from IBM-09)

 76

multi-tenant architecture. The clients do not pay for the software

possession, as in a desktop licensed usage, instead they pay for usage based

on a time scale and a subscription. The vendor servers are partitioned

virtually so that each deserved organization works with an instance of the

application virtually personalized (customized). The most known

application offered by Cloud computing is Google MapReduce, that run on

a cloud composed by 1,800 machines 2 GHz Intel Xenon, 4GB memory

and 160 GB IDE disks. The estimation of Gartner is that SaaS will rise

early at a rate of 22.1% until 2011.

From a Google point of view (one of the bigger supplier in Cloud

resources) the Cloud computing is:

- user-centric - once connected a user can access the stored objects and share

with others and any device accessing his data becomes as if is his object;

- task-centric - is focused on application result and not on the application itself;

- powerful - thousands of computers connected together;

- accessible - any computer having a connection to Internet (for efficiency

considerations, a broadband connection) can use the cloud;

- intelligent;

- programmable.

The Cloud computing represents for giant IT companies a strategic field of

investments in hardware, software and research:

- IBM and Dell ship cloud computing machines.

- Google have in 2008 1 million servers in 30 data-centers and realizes early

investments of about $2 Billions in Datacenters.

- A new IBM-Google initiative aims to provide computer science students

with a complete suite of open source-based development tools so they can

gain the advanced programming skills necessary to innovate and address

the challenges of this computing model which uses many computers

networked together through open standards and thereby drive the Internet's

next phase of growth [IBM].

- Microsoft enlarge their server farms at a rate of 20,000 new servers/month.

2.1.1 The Logical Structure of Web Servers

 The base plate of a web server (figure 2.6) composed by three basic

elements: the physical server, the server operating system (must include a network

operating system - NOS) and the server called HTTP (HyperText Transport

Protocol).

The physical structure, processor, network cards, connection and operating

system are described in the books indicated by the references [AvDg03 and

DgAv05] and will not be reintroduced here.

Very briefly, in the functional architecture from figure 2.6, the elements

are:

 77

- Administrative workstation (or the system console) is the workstation used

to administer the operating system running on the server. In general, a Web

server, that is part of Internet, is a dedicated server (it is possible to use

non-dedicated servers in Intranet configuration, this means at local level

and, in these situations the machine running the server operating system

can be also used as a workstation and

consequently can play the role of the

administrative workstation).

- Servers uses a Network Operating System

(NOS) that must enough capable to offer

simultaneously services to most clients.

The server, utilizing NOS acts the same as

a network traffic police which controls the

Workstation file requests (reads and writes

to network drives), printer output and

communications between users and file

servers attached to the network. This is the

system software necessary to control the

access to and flow of information around the network. It is used to implement

the different levels of the open system interconnection (OSI) model. It

provides the following functions:

 access control or security through providing user accounts with user

names and passwords;

 file and data sharing of data stored on a database server or file server;

 communication between users via e-mail, diary systems or

workgroup software;

 sharing of devices.

The Operating System of the Network can be UNIX (and anyone of his

clones such as Linux), MacOS, OS/2, Novell NetWare, IBM LAN Manager

(these last previous two are the most widely used), Banyan Vines, Windows

NT xx Server, Windows 2000 or 2003 Server, etc;

- HTTP is the protocol that governs how web browsers (clients) and web

servers talk to each other. All messages sent between browsers and servers

must be formatted according to the HTTP specification. The HTTP

commands allow an application to interpret a page together with his

HTML (HyperText Markup Language) links. The HTTP server manages,

interprets and acts the HTTP commands.

The Hypertext Transfer Protocol (HTTP) is an application-level

protocol for distributed, collaborative, hypermedia information

systems. HTTP has been in use by the World-Wide Web global

information initiative since 1990. The first version of HTTP,

referred to as HTTP/0.9, was a simple protocol for raw data

transfer across the Internet. HTTP/1.0, as defined by RFC1945,

improved the protocol by allowing messages to be in the format of

Figure 2.6 The functional

architecture of the base plate of

a web server

 78

MIME like messages, containing meta-information about the data

transferred and modifiers on the request/response semantics.

However, HTTP/1.0 does not sufficiently take into consideration

the effects of hierarchical proxies, caching, the need for persistent

connections, or virtual hosts. In addition, the proliferation of

incompletely implemented applications calling themselves

“HTTP/1.0” has necessitated a protocol version change in order for

two communicating applications to determine each other’s true

capabilities. This specification defines the protocol referred to as

“HTTP/1.1”. This protocol includes more stringent requirements

than HTTP/1.0 in order to ensure reliable implementation of its

features. Practical information systems require more functionality

than simple retrieval, including search, front-end update, and

annotation.

The system software manufacturers offer a lot of web servers that runs under

different platforms. Table 2.1 shows the main pairs server-platform on the market.

Table 2.1 The main pairs server-platform
Manufacturer Server Platform

Apache Apache
*)
 Linux, Unix, Windows (NT, 2k, 2003,

2008, …)

Netscape Enterprise server Linux, Unix, Windows (NT, 2k, 2003,
…)

Microsoft Internet Information
Services

Windows (NT, 2k, 2003)

Lotus Domino Windows NT, OS/2

Novell Intranetware Netware, Windows (2k, 2003)

Sun Sunserver Solaris

Oracle Webstart Unix
*)

is one of the pairs widely used in the domain of web servers

In the table below is shown the position of web server top developers:

Developer January 2006 Percent February
2006

Percent Change

Apache 50,502,840 67.11 51,810,676 68.01 0.90

Microsoft 15,510,953 20.61 15,666,702 20.56 -0.05

Sun 1,879,856 2.50 1,880,313 2.47 -0.03

Zeus 561,524 0.75 579,198 0.76 0.01

Source: Web Server Survey news.Netcraft.com February 2006 survey based on

received responses from 76,184,000 sites

Developer July 2009 Percent August
2009

Percent Change

Apache 113,019,868 47.17% 104,611,555 46.30% -0.87

Microsoft 55,918,254 23.34% 49,579,507 21.94% -1.39

qq.com 30,447,369 12.71% 30,278,988 13.40% 0.69

 79

Google 14,226,904 5.94% 14,213,976 6.29% 0.35

nginx 10,174,573 4.25% 11,502,109 5.09% 0.84

lighttpd 1,326,240 0.55% 2,025,521 0.90% 0.34

Source: Web Server Survey news.Netcraft.com

The HTTP protocol is a request/response protocol. The HTTP protocol

allow to clients and web servers to establish a connection based on TCP

(Transmission Control Protocol) allowing data transfers (documents, images etc)

from server to client or from client to server. A client sends a request to the server

in the form of a request method, URI (Uniform Resource Identifiers), and protocol

version, followed by a MIME-like (Multipurpose Internet Mail Extensions)

message containing request modifiers, client information, and possible body

content over a connection with a server. The server responds with a status line,

including the message’s protocol version and a success or error code, followed by a

MIME-like message containing server information, entity meta-information, and

possible entity-body content. URI’s have been known by many names: WWW

addresses, Universal Document Identifiers, Universal Resource Identifiers, and

finally the combination of Uniform Resource Locators (URL) and Names (URN).

As far as HTTP is concerned, Uniform Resource Identifiers are simply formatted

strings which identify - via name, location, or any other characteristic - a resource.

The data transferred have an associated data-type (a header describing the

content text, image, HTML etc and how they coded) and the transfer uses the

ASCII character set and the MIME standard.

The information using the MIME standard are converted as MIME

standard requires and provided with a header having, for example, the following

fields:

MIME-version: 1.0

Content-Type: type/specification parameter_name=parameter_value

Content-ID:

Content-Description:

In the Content-Type field is specified the type of the send message body.

The specifications of document types in MIME standard are listed in the table 2.2.

Table 2.2 The MIME standard document types
Specification Explanation

Text/plain Unformatted text

Text/richtext Text with simple formatting elements

Text/enriched Text with complex formatting elements

Text/html Text with HTML formatting elements

Image/jpeg Image in JPEG format

Image/gif Image in GIF format

Audio/basic ISDN format on 8 bits, 1 channel and 8000 Hz

Video/mpeg Movie in MPEG format

 80

Message/external-body Reference to an unformatted document stored on
hard drive

Message/rfc822 Document in RFC822 (e-mail) format

Message/partial The biggest part of a document in RFC822 (e-mail)
format

Multipart/mixed The content composed by many documents in
MIME format

Multipart/alternative The contents composed by many parts in MIME
format each part containing the same information
but represented in a different format

Multipart/parallel The contents includes many parts in MIME format
that can be processed simultaneously

Multipart/digest The MIME body have many parts each of each in
message/rfc822 format

Application/octet-
stream

Can not be processed by the program and requires
saving the MIME body in a

Application/postscript Document or application in PostScript format

Application/x-www-
form-url-encoded

Data from HTML forms

The field Content Transfer Encoding describes the method used for data

coding in the MIME body as shown in table 2.3.

Table 2.3 The types for content data coding
Type Explanation

7bit The contents is in NVT ASCII format, un-coded

8bit The content composed by rows containing characters
represented on 8 bits, uncoded

Binary The content composed by different characters but not divided
in rows

Quoted-
printable

The contents is coded in NVT ASCII format on 7 bits using the
q method

Base64 The contents is coded using b method (base64)

x-user The contents coded with a user defined method

The client application (a general browser or another web oriented

application) contact the http server and then send his request in which it specifies

the type of action the browser whishes the server to perform. The server

applications, executes the client request and, send to this one an answer including

the information corresponding to the query execution. The typical structure of a

client query is: method identifier, required object name, the client http protocol

version number. In the context of HTTP, a method is essentially the name of a

command. The HTTP methods identifiers and the action requested are listed in

table 2.4.

 81

[Internet Society, RFC 2616] HTTP messages consist of requests from

client to server and responses from server to client:

HTTP-message = Request | Response ; HTTP/1.1
messages

Request and Response messages use the generic message format of RFC

822 for transferring entities (the payload of the message). Both types of

message consist of a start-line, zero or more header fields (also known as

“headers”), an empty line (i.e., a line with nothing preceding the CRLF)

indicating the end of the header fields, and possibly a message-body.

generic-message = start-line
 *(message-header CRLF)
 CRLF
 [message-body]

start-line = Request-Line | Status-Line
The request-header fields allow the client to pass additional information

about the request, and about the client itself, to the server. These fields act

as request modifiers, with semantics equivalent to the parameters on a

programming language method invocation (Some of this are Accept,

Accept-Charset, Authorization, Host, User-Agent etc; see the RFC 2616

for any details). After receiving and interpreting a request message, a

server responds with an HTTP response message:

Response = Status-Line
*((general-header
| response-header
| entity-header) CRLF)
CRLF
[message-body]

The first line of a Response message is the Status-Line, consisting of the

protocol version followed by a numeric status code and its associated

textual phrase, with each element separated by SP characters. No CR or LF

is allowed except in the final CRLF sequence.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase
CRLF
The Status-Code element is a 3-digit integer result code of the attempt to

understand and satisfy the request. The first digit of the Status-Code

defines the class of response:

· 1xx: Informational - Request received, continuing process

· 2xx: Success - The action was successfully received, understood, and

accepted

· 3xx: Redirection - Further action must be taken in order to complete the

request

· 4xx: Client Error - The request contains bad syntax or cannot be fulfilled

· 5xx: Server Error - The server failed to fulfill an apparently valid request

 82

Table 2.4 Method Identifiers in HTTP protocol

Method Explanation
(The hachured text in the Explanation column refers to HTTP/1.1
specification as defined in RFC 2616 Internet Society, June
1999)

GET The client want download the content of the object specified in

the query.
The GET method means to retrieve whatever information
(in the form of an entity) is identified by the Request-URI.
If the Request-URI refers to a data-producing process, it
is the produced data which shall be returned as the entity
in the response and not the source text of the process,
unless that text happens to be the output of the process.

HEAD The client wants in advance the http header fields as if he

receives from server when download completed.
The HEAD method is identical to GET except that the
server must not return a message-body in the response.
The metainformation contained in the HTTP headers in
response to a HEAD request should be identical to the
information sent in response to a GET request. This
method can be used for obtaining metainformation about
the entity implied by the request without transferring the
entity-body itself. This method is often used for testing
hypertext links for validity, accessibility, and recent
modification.

POST The client wants modify the required object by sending in query

the changed contents of the object.
The POST method is used to request that the origin
server accept the entity enclosed in the request as a new
subordinate of the resource identified by the Request-
URI in the Request-Line. POST is designed to allow a
uniform method to cover the following functions:

o Annotation of existing resources;
o Posting a message to a bulletin board,

newsgroup, mailing list, or similar group of
articles;

o Providing a block of data, such as the result of
submitting a form, to a data-handling process;

o Extending a database through an append
operation.

PUT The client want store transmitted data to the URL address

specified in the query.
The PUT method requests that the enclosed entity be
stored under the supplied Request-URI. If the Request-
URI refers to an already existing resource, the enclosed
entity should be considered as a modified version of the
one residing on the origin server. If the Request-URI

 83

does not point to an existing resource, and that URI is
capable of being defined as a new resource by the
requesting user agent, the origin server can create the
resource with that URI. If a new resource is created, the
origin server must inform the user agent via the 201
(Created) response (status-code value 201). If an
existing resource is modified, either the 200 (OK) or 204
(No Content) response codes should be sent to indicate
successful completion of the request. If the resource
could not be created or modified with the Request-URI,
an appropriate error response should be given that
reflects the nature of the problem. The recipient of the
entity must not ignore any Content-* (e.g. Content-
Range) headers that it does not understand or implement
and must return a 501 (Not Implemented) response in
such cases.

PATCH Similarly to PUT bat the body contains only the changes to be

done on the object given by URL

COPY The clients wants copy the resource specified by URL

MOVE The client wants change the name of the resource given by URL

DELETE The client wants delete the resource specified by URL.
The DELETE method requests that the origin server
delete the resource identified by the Request-URI. This
method may be overridden by human intervention (or
other means) on the origin server. The client cannot be
guaranteed that the operation has been carried out, even
if the status code returned from the origin server
indicates that the action has been completed
successfully. However, the server should not indicate
success unless, at the time the response is given, it
intends to delete the resource or move it to an
inaccessible location.

LINK The client want link the resources specified in the query

UNLINK The client want unlink the resources specified in the query

TRACE The client wants that the server include in the answer what this

receive from his part.
The TRACE method is used to invoke a remote,
application-layer loop-back of the request message. The
final recipient of the request should reflect the message
received back to the client as the entity-body of a 200
(OK) response. The final recipient is either the origin
server or the first proxy or gateway to receive a Max-
Forwards value of zero (0) in the request. A TRACE
request must not include an entity.

OPTIONS The client wants supplemental information about the features

offered by the specified resource.
The OPTIONS method represents a request for

 84

information about the communication options available
on the request/response chain identified by the Request-
URI. This method allows the client to determine the
options and/or requirements associated with a resource,
or the capabilities of a server, without implying a
resource action or initiating a resource retrieval.

WRAPPED Allows unifying sub-queries in one query.

CONNECT

This specification reserves the method name CONNECT
for use with a proxy that can dynamically switch to being
a tunnel (e.g. SSL tunneling).

 *) The hachured text in the Explanation column refers to
HTTP/1.1 specification as defined in RFC 2616 Internet
Society, June 1999

The structure of the server answer is similarly with the structure of the

query and contains:

- the protocol version that must be used to process the server answer (the

result of the execution of the operation specified by the client);

- the header fields;

- the http body.

The best view of the Internet comes

with following a packet from your personal

computer:

when you log into a web site, you actually

send a command to a distant server telling

it to download a page of data to your

personal computer (figure 2.7).

Your web browser packages that

command into a packet labeled with the

address of the server storing the page that

you want. Your personal computer sends

the packet to your modem (or terminal

adapter), which transmits it across your

telephone or other connection to your Internet Service Provider (ISP).

The ISP actually operates as a message forwarder. At the ISP, your

message gets combined with those from other PCs and sent through a higher speed

connection (at least you should hope it is a high speed connection) to yet another

concentrator that eventually sends your packet to one regional center. There the

major Internet carriers exchange signals, routing the packets from your modem to

the carrier that haul them to their destination based on their Internet address.

The World Wide Web is the most visually complicated and compelling

aspect of the Internet. Despite its appearances, however, the web is nothing more

than another file transfer protocol. When you call up a page from the web, the

remote server simply downloads a file to your personal computer. Your web

browser then decodes the page, executing commands embedded in it to alter the

typeface and to display images at the appropriate place. Most browsers cache

Figure 2.7 The principle of

communication between a Web

browser and a Web server

 85

several file pages (or even megabytes of them) so that when you step back, you

need not wait for the same page to download once again.

2.1.2 The “transport” protocols

TCP/IP groups together the communication protocols used to manage the

data transmission over Internet. The description of TCP/IP was introduced in §1.8.

2.1.3 The IP addressing

Currently there are two types of Internet Protocol (IP) addresses in active

use: IP version 4 (IPv4) and IP version 6 (IPv6). IPv4 was initially deployed on 1

January 1983 and is still the most commonly used version. IPv4 addresses are 32-

bit numbers often expressed as 4 octets in "dotted decimal" notation (for example,

192.0.32.67). Deployment of the IPv6 protocol began in 1999. IPv6 addresses are

128-bit numbers and are conventionally expressed using hexadecimal strings (for

example, 1080:0:0:0:8:800:200C:417A). The computers in TCP/IP based networks,

even having only one computer, are called hosts. This name comes from the first

deployment of TCP/IP – in the moment the standard defined the personal

computers and workstation don’t exists yet – all existing computers are multi-user

and for that reason they called host. In this paragraph we explain the structure and

usage of IP addresses in IP version 4.

In Internet each station has a unique number expressed as a 32-bit number

and all of the Internet addresses are global. From the address itself, neither you nor

a computer can tell where that address is or, more importantly, how to connect to it.

The routers in the Internet regional centers maintain tables to help quickly send

packets to the proper address. Without such guidance, packets wander throughout

the world looking for the right address.

The Internet addresses are coded on 4 bytes and are expressed in so called

dotted-decimal notation: for example for the number 2188611658 the address can

be written (in 256 base) as 130x256
3
+115x256

2
+144x256

1
+69x256

0

130.115.144.69

The Internet addresses are organized in five classes from A to E. Each

address belonging in the class A, B or C consists of two parts:

a) a network identifier (netid – network address; we denote this by letter N),

distributed by the non-governmental organization InterNIC (Internet Network

Information Center - www.internic.org; www.internic.net) or one of the regional

centers. This address is used for routing over Internet (the choosing of the pathway

from router to router);

b) a host identifier (hostid – the address of the machine in the network; we denote

this by letter H). This address part can be also divided into two parts – sub-network

address and the hardware address. The subnet address allows routing inside the

private network that can provide routers or other interconnection devices that splits

the network.

file:///D:/IT4B/www.internic.org
file:///D:/IT4B/www.internic.net

 86

Both IPv4 and IPv6 addresses are assigned in a delegated manner. Users

are assigned IP addresses by Internet service providers (ISPs). ISPs obtain

allocations of IP addresses from a local Internet registry (LIR) or national

Internet registry (NIR), or from their appropriate Regional Internet

Registry (RIR):

AfriNIC (African Network Information Centre) - Africa Region

APNIC (Asia Pacific Network Information Centre) - Asia/Pacific Region

ARIN (American Registry for Internet Numbers) - North America Region

LACNIC (Regional Latin-American and Caribbean IP Address Registry) –

Latin America and some Caribbean Islands

RIPE NCC (Réseaux IP Européens) - Europe, the Middle East, and Central

Asia

The Internet Assigned Numbers Authority - IANA - has the role to allocate

IP addresses from the pools of unallocated addresses to the RIRs according

to their established needs. When an RIR requires more IP addresses for

allocation or assignment within its region, the IANA makes an additional

allocation to the RIR.

The class D addresses are reserved for broadcast groups (multicast

addressing) and E for future use (experimental).

The range values for the first classes (A, B, and C) classes are:
Class The maximal

number of
networks

The
maximal
number of
hosts per
network

Address
structure*

Comments

A 128 16777216 N.H.H.H Major networks

B 16384 65536 N.N.H.H Large sites

C 2097152 256 N.N.N.H Small cites, or groups of
midsize

 * N stand for network and H stand for host

The address range values for the five classes are:
Class Address range 1

st
 byte

A 0.0.0.0 121.255.255.255 1-127

B 128.0.0.0 191.255.255.255 128-191

C 192.0.0.0 223.255.255.255 192-223

D 224.0.0.0 239.255.255.255 224-239

E 240.0.0.0 241.255.255.255 240-254

IP partitions the routing problem into three parts:

 - routing exchanges between end systems and routers (ARP),

 - routing exchanges between routers in the same routing domain (interior

routing), and,

 - routing among routing domains (exterior routing).

The machines having standard IP addresses can change information over

Internet. Two machines that are members of two different networks must passes

through an interconnection system of the network, a router (it is possible to pass

http://www.afrinic.net/
http://www.apnic.net/
http://www.arin.net/
http://lacnic.net/en/index.html
http://www.ripe.net/

 87

through many routers to go from one machine to another one). Each router is

connected at least to two machines.

The distinction between the hardware address and network address is

realized by intermediate of a so called subnet mask. The comparison between the

destination address of an IP packet and the subnet-mask shows if the receiver (the

destination) is a member of the same network or not. If the receiver is not a

member of the same network with the sender the packet is transmitted (passed) to

router that decides, according with his routing table and other reasons (the traffic,

for example), to which other router will be send. If the receiver is in the same

network an address resolution frame of the logic address with the hardware

(physical) address is send over the network. The receiver that recognize that

address resolution frame (ARP) respond by giving his hardware address and from

that moment the communication between the two machines can really take place.

It is still possible for almost people to get assignment of a number

for a small "Class C" network in which the first three bytes identify the

network and the last byte identifies the individual computer. Larger

organizations can get a "Class B" network where the first two bytes

identify the network and the last two bytes identify each of up to 64

thousand individual workstations. There are only about 2 million class A,

B and C addresses. Almost all the "B" class addresses are assigned. As a

result there is a proposal to enlarge the address space to 128 bits, called

IPNG (Internet Protocol Next Generation or IPv6). It also removes certain

non-essential features of the IP protocol making it faster and easier to

implement.

Certain addresses have special meanings. In particular 0, 127 and

255 are usually reserved for special use. The number 255 indicates a

broadcast address (for example 131.123.2.255), which is listened for by all

machines on the net or subnet. Note that some vendors use 0 as the

broadcast address by default (e.g. Sun) whereas others use 255. All

systems on a network must be configured to use the same broadcast

address. This is set with the operating system specific command. The value

0 is not assigned to any machine or network. The network address with 127

as the first byte is the "loopback network", which is fictitious. The address

127.0.0.1 is called "localhost" and means the current host machine.

The organization connects to the Internet through one of a dozen

regional or specialized network suppliers. The network vendor is given the

subscriber network number and adds it to the routing configuration in its

own machines and those of the other major network suppliers.

When designing networks we generally build a network of

networks using some devices, such as routers and bridges, allowing us to

extend a network beyond the limits imposed by the standard on a single

network. It turns out that routers or occasionally hosts acting as gateways

play a special part in this design. Routers and gateways understand

different protocols, such as IP, and can look at the IP portion of a packet

 88

and from the destination address to determine the route it should take next.

The IP uses a concept called subnets to determine individual networks.

Each separate network is a separate subnet, the router needs to look at IP

addresses and determine if they belong to that network or not. This is down

by using a subnet mask. The subnet mask is a 32 bit value as IP address is

and is logically and-ed with the IP address to see if the destination is on the

same network as the router or gateway. For a class B address a normal

subnet mask value would be 255.255.255.0 or sometimes displayed with

the hexadecimal address of 0xffffff00. Those values produce the equivalent

mask, one with the first 24 bits set to 1 and then the remaining bits are 0.

Lets use an example to demonstrate how this works. Grivita

building has an IP address of 130.85.105.3 and a subnet mask of

255.255.255.0. The router interface supporting that building has an IP

address of 130.85.105.1 and a subnet mask of 255.255.255.0. When the

router interface sees a packet with Grivita destination address it performs

the logical and comparison on both its own IP address and subnet mask as

well as the destination addresses IP address. It then compares the two

resulting values, if they are equal the router knows the packet is on the

same network and does not need to be forwarded. In the examples that

follows are shown the both cases. In the sample the addresses expressed as

dotted decimal addresses are translated into the equivalent of that in binary

to easy apply the bitwise logical And operation (anded):

a) the result of applying the bitwise And operation produces the same value

b) the result of applying the bitwise And operation do not produces the

same value
*)

*)

The results are not equal and the router must consult it's routing

table to forward the packet on to the next destination.

 89

2.1.4 The DNS

The usage of these dotted-decimal addresses can be very restrictive for

common users. In Internet the common users access the servers and other shared

resources by using names, almost of the time meaningful names. These names are

associated to the dotted-decimal address of the station and are allowed and

managed by DNS (Domain Name System).

DNS, was specified in 1983 and, allows the mapping of symbolic names to

Internet addresses. Originally was realized statically in a centralized file (in Linux

can be done statically in /etc/hosts). As Internet grew there was a need for a

dynamic distributed system.

DNS defines:

 A hierarchical namespace for hosts;

 A host table implemented as a distributed database;

 Library routines for access ;

 Routing for e-mail;

 A protocol to exchange naming information.

The hierarchy structure for DNS is:
 Root of

Namespace

.net .uk .com .gr .ro Top_Level
Domains

.openmarket.com .ibm.com Domains in .com

wwwibm.com .reasearch.ibm.com Hosts and
domains in
.ibm.com

The DNS:

 Is organized as tree of domains with ascending authority;

 Offers two types of top-level domains

o 3 letter in US (such as com, edu, gov, mil, net, org, intr, arpa etc).

The “three” letters (can be more than three) can be used

worldwide;

o 2 letter national (ISO – such as ro, fr, uk, gr, us etc);

 Contains second level domains assigned by RIR (Regional Internet

Registry), InterNIC (Internet Network Information Center) or RIPE in

Europe, for example;

 Allows creating as desired, by organizations having second level domains,

lower level sub-domains (e.g. ie.ase.ro)

javascript:if(confirm('http://www.internic.net/%20%20/n/nThis%20file%20was%20not%20retrieved%20by%20Teleport%20Pro,%20because%20it%20is%20addressed%20on%20a%20domain%20or%20path%20outside%20the%20boundaries%20set%20for%20its%20Starting%20Address.%20%20/n/nDo%20you%20want%20to%20open%20it%20from%20the%20server?'))window.location='http://www.internic.net/'

 90

 Allows delegating authority to create further sub-domains (e.g.

vb.ie.ase.ro).

Note that domains reflect organizational structure whereas IP addresses reflect

network connectivity (for routing purposes). These are often the same but do

not need to be.

The letters defining a domain are used as Internet Domain Name Suffixes.

The list of common Internet Domain Name Suffixes is shown in table 2.6.

Table 2.6 Common Internet Domain Name Suffixes (http://www.icann.org)

Ending Kind of application

.arts Cultural groups

.arpa ARPAnet site (USA)

. aero Air-transport industry

. asia Asian Countries

.biz Restricted to Business

.com General business and individuals

. coop Cooperatives

.edu or .ac Schools/Educational sites

. eu European Countries

.firm Businesses

.gov Government

.info Information services (unrestricted use)

.int International Institutions

.jobs Human resource management

.mil Military (USA)

.mobi Mobile

.museum Museums

.net Internet service providers or

general/administrative network

.nom Individuals

.name Individuals

.nato NATO site

.org Organizations

.pro Accountants, lawyers, and physicians

.rec Recreation sites

.store Retailers

.travel Travel related business

.web Web-related organizations

.ro, .fr, .deu, .uk … The country domain

There are a number of "root nameservers" in existence in various corners

of the Internet which store the ultimate information for the root domain, as well as

 91

zones for a handful of top-level domains. Certain organizational units, such as

countries and universities, have delegation of domains underneath the root and top-

level domains. Entities wishing domain names must register, and perhaps receive

delegation of, their domains from the appropriate registry.

2.1.5 URL

Web pages and related files are located and accessed in Internet by means

of special constructions called URL. Internet addresses are separate and distinct

from the domain names used as Uniform Resource Locators (URLs) through

which you specify Web pages. The domain names give you a handle with a

natural-language look. Internet addresses are, like everything in computing, binary

codes. Even domain names are running short. Finding a clever and meaningful

name for a web site is a challenge that's ever increasing. Believing that one of the

problems in the shortage of URLs has been the relatively few suffixes available,

one of the coordinating agencies for Internet names, the International Ad Hoc

Committee, proposed seven additional suffixes in addition to the six already in use

in the U.S. and the national suffixes used around the world (the ISO country two

letters such as .ro for Romania, .us for United States, .uk for United Kingdom, .fr

for France, and so on).

URL is an acronym for Uniform Resource Locator. URL is expressed as a

character string that supplies the Internet address of a site or of a www resource.

The general syntax of URL is:

communicationservice://hostname[:portnumber]/pathname/resourcename

In a Web page the links are represented by specially formatted text strings or by

graphical elements that, when acted (by a mouse click, for example) displays more

text or graphics. This files tagged by links can be represented by other Web pages

or any kind of files such as graphic, image, sound, video, data fill-in forms, Java

applets, movies and any kind of necessary file. A hypothetical URL can take the

following general structure:

An URL address can consist of five parts: protocol, domain, directory path,

file name and anchor. For these elements a brief description follows:

- protocol: represented by rules that governs the data transfer in the network.

Internet uses for Web pages (HTML pages) the http (HyperText Transport

Protocol) – the word in the example URL http:

- domain: represented by the name of the host computer (hostname) and the

Internet namespace - www.sels.ase.ro

http:// www.sels.ase.ro /courses/generalinformatics/index.html

 protocol domain directory path file name

http://www.stiinte.ued.ro/

 92

- directory path: the absolute or relative location of the file -

courses/generalinformatics

- file name: the web page, graphic, or sound file - index.html

- anchor: a marker which identifies a location inside a file (like a bookmark in

normal documents) to which you can link. Once an anchor is placed in a

location you can create a link to that spot.

The most common URL type is:

 file:// - a local URL located in your hard drive(s) for example

file://c|/index.htm that points the file called index.htm stored in the root of the

local drive C: (Windows, MS-DOS);

 http:// - which gives the Internet address of a Web page (hypertext URLs);

 gopher:// - gives the Internet address of a Gopher directory. Gopher is a system

used to locate and transfer information that index the filenames in Internet. The

syntax of a gopher URL is gopher://hostname:port/filename, where hostname

is the name of the host computer (that usually is a LAN), port is the address of

his port;

 telnet:// - allows connect you in real time with another computer in Internet and

then to use that computer as you use a local one. For example for networks

running under UNIX operating system (and clones), the syntax for telnet:// is

telnet:// or tn3270:// followed by the name of the computer we want to connect

to.

 ftp:// - which gives the Internet address of a FTP resource. FTP - File Transport

Protocol – is the common command set used to upload/download files to/from

Web sites.

URI – Uniform Resource Identifiers

 Uniform Resource Identifiers (URI) provide a simple and extensible means

for identifying a resource. A URI is a compact string of characters for identifying

an abstract or physical resource.

URI’s have been known by many names: WWW addresses, Universal

Document Identifiers, Universal Resource Identifiers, and finally the combination

of Uniform Resource Locators (URL) and Names (URN).

[T. Berners-Lee – RFC 1630] The web is considered to include objects

accessed using an extendable number of protocols, existing, invented for

the web itself, or to be invented in the future. Access instructions for an

individual object under a given protocol are encoded into forms of address

string. Other protocols allow the use of object names of various forms. In

order to abstract the idea of a generic object, the web needs the concepts of

the universal set of objects, and of the universal set of names or addresses

of objects.

A Universal Resource Identifier (URI) is a member of this universal set of

names in registered name spaces and addresses referring to registered

protocols or name spaces. A Uniform Resource Locator URL), defined

file:///D:/WINDOWS/Profiles/Administrator/Application%20Data/Microsoft/index.htm
gopher://hostname:port/filename
tn3270://

 93

elsewhere, is a form of URI which expresses an address which maps onto

an access algorithm using network protocols.

URI are characterized by the following definitions for the words that gives

his name:

1. Uniform - uniformity provides several benefits: it allows different types of

resource identifiers to be used in the same context, even when the mechanisms

used to access those resources may differ; it allows uniform semantic

interpretation of common syntactic conventions across different types of

resource identifiers; it allows introduction of new types of resource identifiers

without interfering with the way that existing identifiers are used; and, it allows

the identifiers to be reused in many different contexts, thus permitting new

applications or protocols to leverage a pre-existing, large, and widely-used set

of resource identifiers.

2. Resource - a resource can be anything that has identity.

Familiar examples include an electronic document, an image, a service

(e.g., "today's weather report for Los Angeles"), and a collection of other

resources. Not all resources are network "retrievable"; e.g., human beings,

corporations, and bound books in a library can also be considered

resources. The resource is the conceptual mapping to an entity or set of

entities, not necessarily the entity which corresponds to that mapping at

any particular instance in time. Thus, a resource can remain constant even

when its content - the entities to which it currently corresponds - changes

over time, provided that the conceptual mapping is not changed in the

process.

3. Identifier - an identifier is an object that can act as a reference to something

that has identity.

In the case of URI, the object is a sequence of characters with a restricted

syntax. Having identified a resource, a system may perform a variety of

operations on the resource, as might be characterized by such words as

`access', `update', `replace', or `find attributes'.

A URI can be classified as a locator, a name, or both:

- the term "Uniform Resource Locator" (URL) refers to the subset of URI that

identify resources via a representation of their primary access mechanism (e.g.,

their network "location"), rather than identifying the resource by name or by some

other attribute(s) of that resource.

Although many URL schemes are named after protocols, this does not

imply that the only way to access the URL's resource is via the named

protocol. Gateways, proxies, caches, and name resolution services might

be used to access some resources, independent of the protocol of their

origin, and the resolution of some URL may require the use of more than

one protocol (e.g., both DNS and HTTP are typically used to access an

"http" URL's resource when it can't be found in a local cache).

 94

- the term "Uniform Resource Name" (URN) refers to the subset of URI that are

required to remain globally unique and persistent even when the resource ceases to

exist or becomes unavailable.

A URN differs from a URL in that it's primary purpose is persistent

labeling of a resource with an identifier. That identifier is drawn from one

of a set of defined namespaces, each of which has its own set name

structure and assignment procedures. The "urn" scheme has been reserved

to establish the requirements for a standardized URN namespace.

The following examples illustrate URI that are in common use:

 ftp://ftp.ie.ase.ro/courses/generalinformatics.pdf - ftp scheme for File Transfer

Protocol services
 gopher://spinaltap.micro.umn.edu/00/Weather/California/Los%20Angeles -

gopher scheme for Gopher and Gopher+ Protocol services
 http://www.math.uio.no/faq/compression-faq/part1.html - http scheme for

Hypertext Transfer Protocol services
 mailto:courseadmin@ie.ase.ro - mailto scheme for electronic mail addresses
 news:comp.infosystems.www.servers.unix - news scheme for USENET news

groups and articles
 telnet://melvyl.ucla.edu/ - telnet scheme for interactive services via the

TELNET Protocol

2.2 Service protocols

 The web server, whose base plate described in the §2.1.1, uses at the lower

level the HTTP protocol that allows users to request services from his part. A web

server may offer a lot of other specialized services, defined as protocols. The

HTTP protocol is the core of all that protocols. We introduce in this paragraph

these services and the positioning of that ones relatively to HTTP protocol.

2.2.1 TCP/IP - HTTP

Figure 2.8 shows the relationship

between TCP/IP (see §2.1.1) protocols and

HTTP (see §2.1.2) protocol. All user requests

addressed to the HTTP server and the

responses of this one are send, respectively,

received by intermediate of Internet TCP/IP

protocols. The common way the user interacts

with the web server is the usage of a general

web browser. HTTP is the protocol that

governs how web browsers (clients) and web

servers talk to each other. All messages sent

between browsers and servers must be

formatted according to the HTTP specification. The HTTP commands allow an

Figure 2.8 The positioning of

TCP/IP and HTTP protocols

gopher://spinaltap.micro.umn.edu/00/Weather/California/Los%20Angeles
http://www.math.uio.no/faq/compression-faq/part1.html
mailto:courseadmin@ie.ase.ro
news:comp.infosystems.www.servers.unix
telnet://melvyl.ucla.edu/

 95

application to interpret a page together with his HTML (HyperText Markup

Language) links. The HTTP server manages, interprets and acts the HTTP

commands.

2.2.2 SMTP/POP

Figure 2.9 shows the position of the mail service and his associated

protocols SMTP and POP.

SMTP - Simple Mail Transfer Protocol - is an electronic mail protocol that allows

mails to travel over the internet.

POP – Post Office Protocol – is a utility that allows users to receive their mails.

SMTP. The objective of the Simple Mail Transfer Protocol (SMTP) is to transfer

mail reliably and efficiently.

SMTP is independent of the particular transmission subsystem and requires only a

reliable ordered data stream channel. An

important feature of SMTP is its

capability to transport mail across

networks, usually referred to as "SMTP

mail relaying". A network consists of the

mutually-TCP-accessible hosts on the

public Internet, the mutually-TCP-

accessible hosts on a firewall-isolated

TCP/IP Intranet, or hosts in some other

LAN or WAN environment utilizing a

non-TCP transport-level protocol. Using

SMTP, a process can transfer mail to

another process on the same network or

to some other network via a relay or

gateway process accessible to both

networks. In this way, a mail message may pass through a number of intermediate

relay or gateway hosts on its path from sender to ultimate recipient.

The SMTP design can be pictured as in figure 2.10. When an SMTP client

has a message to transmit, it establishes a two-way transmission channel to an

SMTP server. The responsibility of an SMTP client is to transfer mail messages to

Figure 2.9 The positioning of TCP/IP

and HTTP protocols

Figure 2.10 SMTP

 96

one or more SMTP servers, or report its failure to do so. Message transfer can

occur in a single connection between the original SMTP-sender and the final

SMTP-recipient, or can occur in a series of hops through intermediary systems.

When the user agent on a client host wishes to enter a message into the

transport system, it establishes an SMTP connection to its relay host and

sends all mail to it. An SMTP client determines the address of an

appropriate host running an SMTP server by resolving a destination

domain name to either an intermediate Mail eXchanger host or a final

target host. An SMTP server may be either the ultimate destination or an

intermediate "relay" (that is, it may assume the role of an SMTP client

after receiving the message) or "gateway" (that is, it may transport the

message further using some protocol other than SMTP). SMTP commands

are generated by the SMTP client and sent to the SMTP server. SMTP

replies are sent from the SMTP server to the SMTP client in response to

the commands. Message transfer can occur in a single connection between

the original SMTP-sender and the final SMTP-recipient, or can occur in a

series of hops through intermediary systems. In either case, a formal

handoff of responsibility for the message occurs: the protocol requires that

a server accept responsibility for either delivering a message or properly

reporting the failure to do so.

Once the transmission channel is established and initial handshaking

completed, the SMTP client normally initiates a mail transaction.

Such a transaction consists of a series of commands to specify the

originator and destination of the mail and transmission of the message

content (including any headers or other structure) itself. When the same

message is sent to multiple recipients, this protocol encourages the

transmission of only one copy of the data for all recipients at the same

destination (or intermediate relay) host.

The server responds to each command with a reply; replies may indicate

that the command was accepted, that additional commands are expected, or that a

temporary or permanent error condition exists.

Once a given mail message has been transmitted, the client may

either request that the connection be shut down or may initiate other mail

transactions. In addition, an SMTP client may use a connection to an

SMTP server for ancillary services such as verification of email addresses

or retrieval of mailing list subscriber addresses.

This transmission normally occurs directly from the sending user's

host to the receiving user's host when the two hosts are connected to the

same transport service. When they are not connected to the same transport

service, transmission occurs via one or more relay SMTP servers. An

intermediate host that acts as either an SMTP relay or as a gateway into

some other transmission environment is usually selected through the use of

the domain name service (DNS) Mail eXchanger mechanism.

 97

POP (Post Office Protocol). On certain types of smaller nodes in the Internet it is

often impractical to maintain a message transport system (MTS). For example, a

workstation may not have sufficient resources (cycles, disk space) in order to

permit a SMTP server and associated local mail delivery system to be kept resident

and continuously running. Similarly, it may be expensive (or impossible) to keep a

personal computer interconnected to an IP-style network for long amounts of time

(the node is lacking the resource known as "connectivity"). Despite this, it is often

very useful to be able to manage mail on these smaller nodes, and they often

support a user agent (UA) to aid the tasks of mail handling. To solve this problem,

a node which can support an MTS entity offers a maildrop service to these less

endowed nodes. The Post Office Protocol - Version 3 (POP3) [RFC1733] is

intended to permit a workstation to dynamically access a maildrop on a server host

in a useful fashion. Usually, this means that the POP3 protocol is used to allow a

workstation to retrieve mail that the server is holding for it. POP3 is not intended to

provide extensive manipulation operations of mail on the server; normally, mail is

downloaded and then deleted.

Initially, the server host starts the POP3 service by listening on TCP port

110. When a client host wishes to make use of the service, it establishes a

TCP connection with the server host. When the connection is established,

the POP3 server sends a greeting. The client and POP3 server then

exchange commands and responses (respectively) until the connection is

closed or aborted.

Commands in the POP3 consist of a case-insensitive keyword, possibly

followed by one or more arguments. All commands are terminated by a

CRLF pair (Carriage Return and Line Feed). Keywords and arguments

consist of printable ASCII characters. Keywords and arguments are each

separated by a single SPACE character. Keywords are three or four

characters long. Each argument may be up to 40 characters long.

Responses in the POP3 consist of a status indicator and a keyword possibly

followed by additional information. All responses are terminated by a

CRLF pair. Responses may be up to 512 characters long, including the

terminating CRLF. There are currently two status indicators: positive

("+OK") and negative ("-ERR"). A POP3 session progresses through a

number of states during its lifetime. Once the TCP connection has been

opened and the POP3 server has sent the greeting, the session enters the

AUTHORIZATION state. In this state, the client must identify itself to the

POP3 server. Once the client has successfully done this, the server acquires

resources associated with the client's maildrop, and the session enters the

TRANSACTION state. In this state, the client requests actions on the part

of the POP3 server. When the client has issued the QUIT command, the

session enters the UPDATE state. In this state, the POP3 server releases

any resources acquired during the TRANSACTION state and says

goodbye. The TCP connection is then closed.

 98

2.2.3 FTP

The FTP (File Transfer

Protocol) protocol is used in

Internet as a standard for transfer

files (for moving files across the

Internet). FTP is available as a

feature of web browsers for

downloading and/or uploading

files (figure 2.11).

A FTP site is a server

offering libraries of files (images,

movies, applications etc). The FTP

servers are real mines of freeware (software with no charge for usage) and

shareware (applications available at a very lower price) software, images, video,

movies, music etc.

The objectives of File Transfer Protocol (FTP), as defined in its

specifications, are:

1) to promote sharing of files (computer programs and/or data),

2) to encourage indirect or implicit (via programs) use of remote computers,

3) to shield a user from variations in file storage systems among hosts, and

4) to transfer data reliably and efficiently.

FTP, though usable directly by a user at a terminal, is designed mainly for

use by programs. Figure 2.12 describes a model for the FTP service, in which:

- The user and server sides of

the protocol have distinct roles

implemented in a user protocol

interpreter (User-PI) and a

server protocol interpreter

(Server-PI);

- The user protocol interpreter

(User-PI) initiates the control

connection from its port U to

the server-FTP process,

initiates FTP commands, and governs the user data transfer process (User-DTP) if

that process is part of the file transfer;

- The user data transfer process (User-DTP) "listens" on the data port for a

connection from a server-FTP process. If two servers are transferring data between

them, the user-DTP is inactive;

- The server data transfer process (Server-DTP), in its normal "active" state,

establishes the data connection with the "listening" data port. It sets up parameters

for transfer and storage, and transfers data on command from its protocol

Figure 2.11 The FTP positioning

PI – protocol interpreter DTP – data transfer process

Figure 2.12 The FTP service

 99

interpreter (PI). The DTP can be placed in a "passive" state to listen for, rather than

initiate a connection on the data port;

- The FTP commands specify the parameters for the data connection (data port,

transfer mode, representation type, and structure) and the nature of file system

operation (store, retrieve, append, delete, etc.). The User-DTP or its designate

should "listen" on the specified data port, and the server initiate the data connection

and data transfer in accordance with the specified parameters. The data port need

not be in the same host that initiates the FTP commands via the control connection,

but the user or the user-FTP process must ensure a "listen" on the specified data

port. The data connection may be used for simultaneous sending and receiving.

In the model described in Figure 2.12, the user-protocol interpreter (User-

PI) initiates the control connection. The control connection follows the Telnet

protocol. At the initiation of the user, standard FTP commands are generated by the

User-PI and transmitted to the server process via the control connection (The user

may establish a direct control connection to the server-FTP, from a Telnet terminal

for example, and generate standard FTP commands independently, bypassing the

user-FTP process). Standard replies are sent from the Server-PI to the User-PI over

the control connection in response to the commands.

Telnet allows someone to be on to be on one computer system while doing

work on another. Telnet is the protocol that establishes an error-free, rapid link

between two computers, allowing you, for example, to log on to your business

computer from a remote computer when you are on the road or working from

home. Is possible also to log in and use third-party computers that have been made

accessible to the public. Telnet uses the computer address you supply to locate the

computer you want to reach and connect you to it.

In the situation a user wish to transfer files between two hosts (neither of

which is a local host) the user must sets

up control connections to the two servers

and then arranges for a data connection

between them. In this manner, control

information is passed to the User-PI but

data is transferred between the server data

transfer processes following the model of

this server-server interaction as shown in

figure 2.13.

Using FTP line commands

The operating systems offer a tool (named by extension FTP) that allows

users to type the FTP commands to the keyboard. By using that tool the user can

connect to a FTP server to list the files (dir, mdir and ls commands in figure 2.15),

to download files (get for singularly file, mget for many files) or, if it has the

Figure 2.13 The FTP server-server

interaction model

 100

necessary rights to upload files (put or mput), to create/delete directories (mkdir,

rmdir), change the name (rename) and so on.

The way to use the

commands and specify their

parameters follows the same rules

as for the command line

commands (MS-Dos prompt

option on Start, Programs,

Accessories in Windows xx

Operating Systems).

Figure 2.14 shows the

user model for interaction with

the FTP interpreter and figure

2.16 lists the commands available

in the Windows Millennium FTP

tool.

 The virtual file structure that FTP supports is not a general one but cover a

wide range of possible files. FTP must consider the following attributes:

- the File Type that can be:

 character files which contains only characters (transmissible and printable)

such as text files or html documents (ASCII);

 binary files which are considered as stream of bits such as executable files,

image files, archive files etc or, in other words, any non text or html file

(BINARY);

- the File Structure that can be:

Figure 2.14 The user interaction with the FTP

tool

C:\>ftp 127.1.80.1
ftp> ?
Commands may be abbreviated. Commands are:
! delete literal prompt send
? debug ls put status
append dir mdelete pwd trace
ascii disconnect mdir quit type
bell get mget quote user
binary glob mkdir recv verbose
bye hash mls remotehelp
cd help mput rename
close lcd open rmdir
ftp> ? mdir
mdir List contents of multiple remote directories
ftp> quit

Figure 2.15 The FTP tool commands

 101

 unstructured files which are considered as a stream of bytes;

 record structured files in the case of character files;

- the Transmission Mode for which a choice can be made for transmitting the

file:

 as a stream of bytes;

 as a series of blocks of bytes.

FTP tool requires, when starting, a permanent connection between the

command handlers of both client and server (figure 2.14). Both client and server

process have a separate component that takes care of all component that is

responsible for data transfer. When starting FTP session a permanent setup

connection is set up the two command handlers. Each time a file is transferred

during session a separate connection between data transfer handlers is set and

subsequently closed after file transfer has taken place. Figure 2.16 is a snapshot of

a ftp session realized in Windows XP environment by using ftp.exe tool (Start,

Run, ftp).

2.2.4 NNTP

Network News Transfer Protocol (NNTP) specifies a protocol for the

distribution, inquiry, retrieval, and posting of news articles using a reliable stream-

based transmission of news among the Internet community. NNTP is designed so

that news articles are stored in a central database (News Database - figure 2.17)

Figure 2.16 The FTP tool commands

ftp://ftp.exe/

 102

allowing a subscriber to select only those items he wishes to read. There is a central

repository of the news articles in one place (customarily a spool directory of some

sort), and a set of programs that allow a subscriber to select those items he wishes

to read. The database is provided with indexing, cross-referencing, and expiration

of aged messages.

The news server uses a

stream connection (such as

TCP) and SMTP-like

commands and responses. It is

designed to accept connections

from hosts, and to provide a

simple interface to the news

database. This server is only an

interface between programs and

the news databases. It does not

perform any user interaction or

presentation-level functions.

These "user-friendly" functions are better left to the client programs, which have a

better understanding of the environment in which they are operating.

Using NNTP, hosts exchanging news articles have an interactive

mechanism for deciding which articles are to be transmitted. A host

desiring new news, or which has new news to send, will typically contact

one or more of its neighbors using NNTP. First it will inquire if any new

news groups have been created on the serving host by means of the

NEWGROUPS command. If so, and those are appropriate or desired (as

established by local site-dependent rules), those new newsgroups can be

created.

The client host will then inquire as to which new articles have arrived in all

or some of the newsgroups that it desires to receive, using the NEWNEWS

command. It will receive a list of new articles from the server, and can

request transmission of those articles that it desires and does not already

have.

Finally, the client can advise the server of those new articles which the

client has recently received. The server will indicate those articles that it

has already obtained copies of, and which articles should be sent to add to

its collection.

In this manner, only those articles which are not duplicates and which are

desired are transferred.

There are popularly two methods of distributing news over Internet: the

USENET news system and the Internet method of direct mailing (LISTSERV).

- USENET newsgroups (Forums) are worldwide discussion groups in which

people share information and ideas on a defined topic. Discussions take

Figure 2.17 NNTP positioning

 103

places in large electronic bulletin boards where anyone can post messages

for others to read.

- LISTSERV allows discussions or messaging to be conducted through

predefined groups but uses e-mail mailing list servers instead of bulletin

boards for communications.

2.2.5 RPC and Multimedia

 Multimedia is the term used to describe software which (together with

appropriate hardware) can interact with user through different techniques such as

text, sound, animation or video. The type of hardware required to support

multimedia includes sound and video card and capture using microphones, video

cameras and scanners. Multimedia software is most common in home computers

but also has business applications such as training courses and product promotions.

Multimedia functions can be incorporated into both general-purpose software (e.g.

word processors and e-mail can include multimedia elements) and application-

specific software.

 Usually the browser interprets the files with a html, htm, gif or jpg

extension. If a hypertext link points to a file having another extension such as pdf,

mov, avi or doc the browser requires an appropriate viewer or reader to read and

interpret this file; these viewers are of two categories: plug-ins or add-ons. The

plug-in is a small program or accessory that can be used to extend a web browser’s

capability. The difference between them is that the plug-in are integrated into the

browser and the user cannot see the difference between this and the browser while

the add-on are superposed to the

browser for execution. Some of

products fits in both categories as for

example VDOlive and Real Audio or

only in one category, as for example,

Flash and Acrobat Reader that are add-

on. The multimedia server offers

together with the multimedia

information the viewers, readers or

specific software that can be accessed

remotely, via RPC protocol, by the

client (figure 2.18).

The remote procedure call (RPC) model is similar to the local procedure

call model. In the local case, the caller places arguments to a procedure in some

well-specified location (such as a result register) and then transfers control to the

procedure, and eventually gains back control. At that point, the results of the

procedure are extracted from the well-specified location, and the caller continues

execution. The remote procedure call is similar, in that one thread of control

logically winds through two processes - one is the caller's process, the other is a

Figure 2.18 The RPC protocol

 104

server's process. That is, the caller process sends a call message to the server

process and waits (blocks) for a reply message. The call message contains, among

other things, the procedure's parameters. The reply message contains, among other

things, the procedure's results. Once the reply message is received, the results of

the procedure are extracted, and caller's execution is resumed. On the server side, a

process is dormant awaiting the arrival of a call message. When one arrives, the

server process extracts the procedure's parameters, computes the results, sends a

reply message, and then awaits the next call message.

The RPC protocol provides the fields necessary for a client to

identify itself to a service and vice-versa. Security and access control

mechanisms can be built on top of the message authentication.

The RPC call message has three unsigned fields: remote program

number, remote program version number, and remote procedure number.

The three fields uniquely identify the procedure to be called. Program

numbers are administered by some central authority. Once an implementor

has a program number, he can implement his remote program; the first

implementation would most likely have the version number of 1.

Because most new protocols evolve into better, stable, and mature

protocols, a version field of the call message identifies which version of

the protocol the caller is using. Version numbers make speaking old and

new protocols through the same server process possible.

2.2.6 Applications gateways

The Common Gateway Interface (CGI) is a standard for interfacing

external applications with information servers, such as HTTP or Web servers

(figure 2.19). The three words that give the name to the standard describe his

functionality:

- Common specifies a universal method for accessing CGI scripts, that

allows to any user, does not mother the used platform, to exchange

information with a CGI script;

- Gateway defines a bridge between CGI script, Web server and other CGI

applications offering the possibility that external programs accept input

data and transmit data to other applications;

- Interface that reduce the complexity of linking diverse applications to

some basic actions describing how external programs can be accessed by

clients. For almost Internet users (clients) the process is very simple: the

client fill-in the fields of displayed form (by the browser) and press the

submit button.

Practically the process follows the steps:

1. The client send data to the Web server;

2. The Web server passes data to a CGI script;

3. The CGI script process data received from server, eventually passes

that data to another application and send a response to the Web server;

 105

4. The Web server returns the response to the client (the response can be,

for example, the result of querying a database, figure 2.20).

The CGI is a simple interface

for running external programs,

software or gateways under an

information server in a platform-

independent manner. The CGI allows

an HTTP server and a CGI script to

share responsibility for responding to

client requests. The client request

comprises a Uniform Resource

Identifier (URI), a request method and

information about the request provided

by the transport protocol.

The CGI defines the abstract parameters, known as meta-variables, which

describe a client's request. Meta-variables contain data about the request passed

from the server to the script, and are accessed by the script in a system-defined

manner.

The server is responsible for

managing connection, data transfer, transport

and network issues related to the client

request, whereas the CGI script handles the

application issues, such as data access and

document processing.

A plain HTML document that the

Web server retrieves is static, which means it

exists in a constant state: a text file that

doesn't change. A CGI program, on the other

hand, is executed in real-time, so that it can

output dynamic information.

The server acts as an application

gateway: it receives the request from the client, selects a CGI script to handle the

request, converts the client request to a CGI request, executes the script and

converts the CGI response into a response for the client. The script is invoked in a

system-defined manner. Unless specified otherwise, the file containing the script

will be invoked as an executable program (figure 2.20).

A CGI program can be written in any language that allows it to be

executed on the system, such as C/C++, Fortran, PERL, TCL, any Unix/Linux

shell, Visual Basic, JavaScript etc or, in a scripting language, such as PERL, TCL,

or a Unix shell. The scripts must reside in a special directory so that the Web server

knows to execute the program (this directory is administered by the webmaster and

is called /cgi-bin, figure 2.20).

Figure 2.19 The CGI positioning

Figure 2.20 CGI-BIN on a

Microsoft Personal Web Server

 106

For example, the Client-Server dialog for processing a form (filled by the

user in his browser, for example, like the registration forms displayed by many

sites when a user access this for the first time requesting some services requiring

authentication) follows the steps (figure 2.21):

1. The Client lunch a URI request that includes a form;

2. The Server receives

the request, analyzes that

and emits the form to be

filled by the Client

(user);

3. The Client fill-in the

form and send that to

Server;

4. The Server runs the

CGI script (specified in

the message received

from Client) that realizes

some processing on data contained by the form (e.g. queries a database, computes

some values etc) and prepares the obtained results;

5. The CGI script transmits the results to the Server in a Server understandable

format;

6. The Server receives the results and sends that to the Client.

When a client activates a link to a CGI script the input data are passed to

the server. The server associate (and assigns) the transmitted data (stored in

meta-variables) with (to) predefined environment variables and verifies if

some data are present to the standard input (stdin) device. The environment

variables are passed to the CGI script (application). After the CGI script

processes data it must return the results (output data) as an answer to client

request; as a rule the answer is in a HTML document format that includes a

header followed by an empty line and the content (body). The body is

formatted accordingly to the information supplied in the header. The

statements for server are specified in the CGI header by intermediate of a

predefined set of meta-variables whose content defines the request from

which:

1) content-type identifies the MIME data type of the response (e.g.:

content-type: text/html);

2) location for defining the URL of the document returned to the client if

the document not directly generated (created) by the script (e.g.: location:

http//www.ie.ase.ro);

3) status providing the status information (error code and explanatory text).

The system software manufacturers offer different alternatives to CGI:

- NSAPI the API alternative to CGI proposed by Netscape for his HTTP servers;

Figure 2.21 The Client-Server dialog when processing a

form using CGI scripts

 107

- TSAPI the alternative to CGI proposed for Windows NT servers (Microsoft);

- ODBC (Open DataBase Connectivity) the interface for data access of Windows

applications (Microsoft);

- JDBC (Java DataBase Connectivity) the interface for data access of Java

applications (Sun);

- SQL (Structured Query Language) the standard language (ISO and ANSI) for

data access (initially the SQL used only for relational database model but his

extensions allow accessing data managed file managers or database management

systems not necessarily for relational model).

2.2.7 Applets

An applet is a program written in the Java programming language that can

be included in an HTML page (figure 2.22), much in the same way an image is

included in a page. When you use a Java technology-enabled browser to view a

page that contains an applet, the applet's code is transferred to your system and

executed by the browser's Java Virtual Machine (JVM).

Applets have the file extension

"class". Some applets consist of more than

just one class file, and often other files

need to be present for the applet to run

(such as JPG or GIF images used by the

applet). When you intent to pickup an

available applet you must check the

documentation for the applet to see if you

have all files for it to run. Before

embedding an applet on your page you

need also to upload the required files to

your server.

You do not need to know Java to install applets on your pages.

There are thousands of free applets available on the internet for almost any

purpose. Most of them can be customized without programming. Most of

today's browsers can run applets.

An applet can be embedded into a webpage. Usually the applet has

several settings that will allow you to personalize it. For instance, if you

insert an applet that will work as a menu, you can specify which options

should be in the menu, and which pages should be loaded upon click on an

option.

Since Java is a real programming language there aren't many

limitations to it. Any program running on your computer could possibly

have been made as an applet. Spreadsheets, wordprocessors, graphics

programs... even entire browsers could be made with Java. However, most

applets used on webpages serve much smaller purposes than the ones

Figure 2.22 The applets positioning

 108

mentioned. The reason is simple: They need to be transferred through the

internet, and therefore can't take up just any amount of space.

When you put an applet on your page you will need to save the

applet on your server as well as the HTML page the applet is embedded in.

When the page is loaded by a visitor the applet will be loaded and inserted

on the page where you embedded it.

2.2.8 Wireless Web

Wireless Web denote Web based applications enabling users to access

digital information from the Internet using wireless mobile communicating devices

(such as PDAs, Internet enabled cell phones etc). These devices are characterized

by tiny displays screens, low-bandwidth connections and minimal memory. The

two main standards governing the Wireless Web for such devices are WAP and I-

mode (figure 2.23 a and b).

WAP (Wireless Application Protocol) - is a system of protocols and technologies

using WML (Wireless Markup Language).

WML is based on XML

and optimized for tiny

display and was

designed only for

describing data and not

for defining the way data

are displayed (as HTML

do, for example). To

speed the access, each

WML file is referred to

a ‘deck’ and consists of

several cards that can be

displayed sequentially

without reconnecting.

WAP architecture uses a

built-in micro-browser

to make a request in WML. The request (figure 2.23 a) is passed to a WAP

gateway which retrieves the information from the Internet Server in either HTML

or WML format. The Gateway converts HTML to WML so that the client can

receive. WAP supports most wireless network standards and operating systems for

handheld computing devices such as PalmOS and Windows Mobile 5 for pocket

PC, for example.

The WAP standard protocols stack looks like:

Wireless Application Protocol (WAP) Internet

Wireless Application Environment (WAE) HTML/Java

Wireless Session Protocol (WSP) HTTP

Figure 2.23 WAP and I-mode models

 109

W
M
L

Wireless Transaction Protocol (WML)

Wireless Transport Layer (WTLS) SSL

Wireless Datagram Protocol (WDP)

TCP/IP

GSM - Global System for Mobile Communication, 9.6-14.4 Kbps
HSCSD – High Speed Circuit Switched Data, 38.4-56 Kbps
GPRS – General Packet Radio Service, 43-170 Kbps (2.5G)
EDGE – Enhanced Data Rates for Global Evolution, 384 Kbps
UMTS – Universal Mobile Telecommunication System, 384-2000 Kbps (3G)

(Mobile Access Technologies - the bearers of WML messages)

I-mode – is a standard developed by the Japan’s NTT DoCoMo mobile phone

network for enabling cell phones to receive Web-based content and services (figure

2.23 b). The I-mode uses a compact HTML to deliver the content that allows easy

transformation of traditional HTML pages in the compact HTML. I-mode uses a

packet switching technology which allows users to permanently connect to the

network and content providers to broadcast relevant information to users.

2.3 Web pages, sites and Web browsers – an introduction

Web pages and web site - definitions

The documents for World Wide Web (www) are known as Web pages and

they are stored on an Internet server and displayed by a Web browser on your

computer. Web browsers display Web pages by interpreting the special HyperText

Markup Language (HTM or HTML) tags which are used to encode Web pages

with display information.

Web pages usually are linked to many different files, such as graphic and

multimedia files. You typically keep these files in a folder or set of folders on your

disk drive, while you construct your Web site (this folder is known as local web

site).

A Web site is defined as a collection of files that are linked to a central

Web page, made available via the Web (the pages forms a cohesive collection of

information). The Web server is a type of server dedicated to storing, transmitting

and receiving the Web pages and Web related files (such GIF and JPEG graphics,

AVI sound and images and so on).

The site’s collection of linked files and Web pages are typically tied

together into a cohesive collection of information by a home page (generally called

default.htm[l], index.htm[l] or simply home.htm[l]). The home page typically

contains a topic list which links it to other Web pages in its Web site. All other

pages, in a well designed Web site, must offer a button or a link to go back home

(or that is provided by the Web browser). When you publish your Web site, you

upload the local site folder (and its contents including subfolders) to a Web server,

which contains the software that “serves” your Web pages out to Web browsers on

computers that are connected to the Internet. Once your local site is published to

 110

the Web server it becomes a Web site. The main or home page of the Web site is

accessed by using Internet URIs.

Web browsers

The www is accessed using a web browser. The interface used by a web

browser makes use of hypertext linking techniques. A hypertext is a document that

includes highlighted words or phrases. These highlighted sections represent links to

other documents or sections of the same document. Clicking the mouse a above

one of these links causes it to be activated. A link can be used to move to another

document, transfer a file, view a section of video, listen to a sound file or carry out

a number of other actions.

All web browsers provide users with a variety of tools that enable them to

navigate through complex collections of WWW pages such as:

- Navigation buttons – these allows user to navigate backwards and

forwards through the list of pages previously viewed. The browser can also

provide additional buttons such as:

o Stop – for canceling the action currently taken;

o Home – for returning to the page designated by the user as “main

page”;

o Search – this provides user access to search engines that can be

used to locate specific information on the Internet;

o History – for access to the list of pages previously viewed by the

user;

o Address bar – for directly entering (typing or choosing from list)

the location of a WWW page.

- Cache – in order to increase the speed and efficiency the browser can use a

temporary storage space to store the copies of any pages the user have

viewed (if the user again access later a previously page viewed this one is

retriever from that temporary space instead downloading from the original

location).

- Bookmarks – allows user maintain a directory of web sites (the user can

add, edit, delete and organizes addresses);

- Security – the modern browsers provide a range of security features, that

can be used alone or in combination to obtain varying levels of security,

such as:

o Digital ID – provides a means of confirming the identity of a

specific user through the use of a small data file called a personal

certificate (the file contains encrypted information relating to the

user’s identity; that personal certificates are received and send by

browser and this one is able to confirm his own identity to a third

party or to verify the identity of a third part);

o Certificates – a site certificates contains information regarding the

identity of a particular site on the Internet (they encrypted to

 111

protect the information they content and used for authenticity

check when accessed by browsers);

o Ratings – the ratings used to restrict access to inappropriate

contents (such as pornography, for example). The check is based

on a defined list of criteria defined by user in the browser to which

the site ratings reports. If the site does not meet the criteria the

access is denied.

- Applets – WWW pages can contain small programs that are activated

when a page is accessed. Such programs can take a variety of forms and

can include complete, self-contained applications known as applets. These

programs are generally considered harmless, they can represent a potential

security risk to an organization or individual. For that reason the browser

must provide control over the operation of any applets embedded in a www

page.

- Plug-in – a plug-in is a small program or accessory that can be used to

extend the web browser capabilities.

- Scripts – all modern web browsers are capable of executing special

commands that have been embedded within the body of a www page

known as scripts.

In 2005 the

classification under the

number of peoples using

of the first 5 search

engines was:

- Google 33%

- Yahoo 31%

- MSN 15%

- AOL Search 10-15%

- Ask Jeevs 5.5%.

Figure 2.24

shows the classification

of search engines under

the preferences of users

when realizing online

research.

Finding information on the Internet

Information can be found on the World Wide Web in the following main

ways:

- By typing in the address bar the URI (URL) of a known web page;

- By using search engines (such as Google, Altavista, AskJeevs etc);

- By using directories / web catalogues / indexes (such as Yahoo);

Figure 2.24 Classification of search engines under the

preferences when realizing online research (Source:
CMO Council, 2005)

 112

- By ‘surfing’;

- By intermediate of Web guides (such as www.about.com and

www.4anything.com).

Web addresses. The preferred method of reaching a web site is by typing the web

address or URL (URI) directly into the web browser (for more information about

URL/URI see §2.1.5. For example, by typing the Yahoo URL

http://www.yahoo.com and pressing Go button the browser will open to you the

Yahoo main page.

Search engines. The search engines provide an index of all words stored in WWW.

Keywords typed by end user are matched against the index and the user is given a

list of hyperlinks to pages containing the keywords. By following the hyperlink the

user is taken to the relevant web page. One goal of all the search engines is to have

the most complete index of files found on the web.

The search engine functionality can be described simply as: the

search engine goes out into the Internet, follows the road signs and paths to

get where it’s going, and collects all of the information in its path. From

this point, the information is sent back to a group of servers where

algorithms are applied in order to determine the importance of specific

documents (to rank the pages and site). Essentially we have an entity that

collects data, stores it, and then sorts through it to determine what’s

important which it’s happy to share with others and what’s unimportant

which it keeps tucked away. Both actions, the search on the web and the

discovery of new pages, are realized by automated tools (software

packages) called spiders or robots. In all major search engines the spiders

crawl from one page to another following the links, as you would look

down various paths along your way. An effective crawler needs to be able

to index other information, including visible text, alt tags, images and even

other non-HTML content such as PDF and word processor documents.

Generally, the crawler gets a list of URL’s to visit and store that; it does

not rank the pages, it only goes out and gets copies which it stores, or

forwards to the search engine to later index and rank according to various

aspects. Some of the most well known crawlers are Googlebot (Google),

MSNBot (MSN), Slurp (Yahoo!) or Teoma (Ask Jeeves). Generally a

crawler, when comes to visit a site, checks for a file called “robots.txt” that

contains information about which files it can request and which files or

directories not allowed to visit.

Most crawling search engines consist of the following main parts:

- crawler – a specialized automated program able to follows links found on

web pages and to direct the spider by finding new sites for it to visit;

http://www.about.com/
http://www.4anything.com/
http://yahoo.com/

 113

- spider – an automatic browser-like program that downloads documents

found on the web by the crawler and store them (possibly in a compressed

format – Google);

- indexer – a program that "reads" the pages that are downloaded by

spiders and decides what the page is about and to calculate a quality

ranking for each web page (for example, by considering the citations of the

page together with the links going out of the page);

- database (the "index") – a simply storage of the pages downloaded and

processed.

- results engine – that generates search results out of the database,

accordingly to the user query.

Google Architecture (figure 2.25). Most of Google is implemented in C

or C++ for efficiency and can run in either Solaris or Linux. In Google, the

web crawling (crawler and spider: downloading of web pages) is done by

several distributed crawlers (1). There is a URLserver (2) that sends lists of

URLs to be fetched to the crawlers. The web pages that are fetched are

then sent to the storeserver (3).

The

storeserver then

compresses and

stores the web

pages into a

repository (4).

Every web page

has an associated

ID number called

a docID which is

assigned

whenever a new

URL is parsed out

of a web page.

The indexing

function is

performed by the

indexer (5) and

the sorter (7).

The

indexer performs a

number of

functions: reads

the repository, un-compresses the documents, and parses them. Each

document is converted into a set of word occurrences called hits. The hits

Figure 2.25 High level Google architecture

 114

record the word, position in document, an approximation of font size, and

capitalization.

The indexer distributes these hits into a set of "barrels" (6),

creating a partially sorted forward index (8). The indexer performs another

important function: it parses out all the links (9) in every web page and

stores important information about them in an anchors file (10). This file

contains enough information to determine where each link points from and

to, and the text of the link.

The URLresolver (11) reads the anchors file and converts relative

URLs into absolute URLs and in turn into docIDs. It puts the anchor text

into the forward index, associated with the docID that the anchor points to.

It also generates a database of links which are pairs of docIDs. The links

database is used to compute PageRanks (12) for all the documents. The

URLresolver reads the anchors file and converts relative URLs into

absolute URLs and in turn into docIDs. It puts the anchor text into the

forward index, associated with the docID that the anchor points to. It also

generates a database of links which are pairs of docIDs. The links database

is used to compute PageRanks for all the documents.

The sorter takes the barrels, which are sorted by docID (for

simplicity purpose but the sort uses many other keys), and resorts them by

wordID to generate the inverted index. This is done in place so that little

temporary space is needed for this operation. The sorter also produces a list

of wordIDs and offsets into the inverted index. A program called

DumpLexicon (13) takes this list together with the lexicon produced by

the indexer and generates a new lexicon to be used by the searcher. The

searcher (14) is run by a web server and uses the lexicon built by

DumpLexicon together with the inverted index and the PageRanks to

answer queries.

Web catalogs or directories. Web directories provide a structured listing of web

sites. They are grouped according to categories such as business, entertainment or

sport. In turn each category is subdivided further (for example the sport category

subdivided into football, rugby, swimming etc). The web catalogs (such as

www.yahoo.com) work differently from search engines in that they have an

hierarchy of information stored under different categories.

A directory is used to record information about a particular group of

objects. The directory is not intended to be a general-purpose data store.

Rather, it is a special type of information repository whose primary

purpose is to efficiently store and retrieve information about objects

relevant to a particular application or set of applications. A directory

service is a physically distributed, logically centralized repository of

infrequently changing data that is used to manage the entire environment.

Directories are commonly used to store information about users,

applications, and network resources such as file servers and printers.

file:///D:/IT4B/www.yahoo.com

 115

Directories have five important characteristics:

 The storage of information is optimized so that it can be read much

more frequently than it is written;

 Information is stored in a hierarchical fashion;

 Information in a directory is attribute-based;

 Directories provide a unified namespace for all resources for which

they contain information;

 Directories can efficiently distribute information in a distributed

system through replication.

A directory service stores and retrieves information from the directory on

behalf of one or more authorized users. A traditional directory service

provides a means for locating and identifying users and available resources

in a distributed system. Directory services also provide the foundation for

adding, modifying, removing, renaming, and managing system

components without disrupting the services provided by other system

components. Today’s directory services are used to do the following:

- Store information about system components in a distributed manner. The

directory is replicated among several servers so that a user or service

needing access to the directory can query a local server for the information;

- Support common searching needs, such as by attribute (for example,

“Find the phone number for James Smith”) and by classification (for

example, “Find all color printers on the third floor”);

- Provide important information to enable single-user logon to services,

resources, and applications;

- Enable a location-independent point of administration and management.

Note that administrative tools do not have to be centrally located and

managed;

- Replicate data to provide consistent access. Modifications made to any

replica of the directory are propagated around the network so that any

application accessing the directory anywhere sees consistent information

after the change is propagated.

Web guides. The web guides (as for example www.about.com or

www.4anyting.com) can be considered extensions of web catalogs because they

consist of structured information about a particular topic providing articles,

definitions, links and news about a particular topic. The web guides are edited by

human who will create a structure and rate the information so that only relevant

material will be included.

Other techniques of finding information. These are represented by the user

applications that have an impact on the use of the Internet by organizations such as

meta-search tools, offline readers or intelligent agents:

- meta-search tools that perform searches across a number of search engines

(such as Ask Jeeves (www.askjeeves.com) and offers to user more

http://www.about.com/
http://www.4anyting.com/
http://www.askjeeves.com/

 116

comprehensive and up-to-date lists (the search results lists are collated and

processed to remove duplicated items);

- offline readers that allows copying individual page, group of pages or

entire sites in the local hard drive with preserving the entire functionality

(including graphics, animation, scripts and any relevant data) and allowing

the user to browse locally the site;

- intelligent agents represented by semiautonomous computer programs (as a

software ‘robot’) capable of carrying out one or more tasks specified by

user (such as monitoring news and locating the stories of interest to a

specific user; searching for a specific product and return details about the

manufacturer etc).

2.4 Web services – an introduction

The companies require both hardware and software to realize their

processing. Instead of buying and installing software programs they can use

Internet or private networks where, by paying a subscription, can rent the same

functions from application service providers. An application service provider

(ASP) is a business that delivers and manages applications and computer services

from remote centers to multiple users via the Internet or private network. Today’s

Internet-driven business environment is changing so rapidly that getting a system

up and running in three month instead of six could mean the difference between

success and failure so that the ASP is a competitive alternative. The ASP enables

also small and medium-sized companies to use applications that they otherwise

could not afford. The applications offered in that way generally have a proprietary

architecture and functionality and the customization do not produces, in all cases,

the desired adaptation to the company needs. To avoid all that impediments a new

way of deploying and using services emerges, known as Web services.

Web services are software components deliverable over the Internet that

enable one application to communicate with another with no translation required.

By allowing applications to communicate and share data regardless of operating

system, programming language, or client device, Web services can provide

significant cost savings, over traditional in-house development.

Web services are self-contained, self-describing, modular applications that

can be published, located, and invoked across the Web. They perform functions,

which can be anything from simple requests to complicated business processes.

Once a Web service is deployed, other applications (and other Web services) can

discover and invoke the deployed service.

Web Services have emerged as a solution to problems associated with

distributed computing. The previous technologies, primarily Common

Object Request Broker Architecture (CORBA) and Distributed Component

Object Model (DCOM), had some limitations. For example, neither has

achieved complete platform independence or easy transport over firewalls.

 117

Additionally, DCOM is not vendor independent, being a Microsoft

product.

A Web Service forms a distributed environment, in which objects can be

accessed remotely via standard interfaces. A Web service performs a specific task

or a set of tasks, such as credit card processing, production scheduling, security,

third-party billing and payment, for example. Web service uses a three-tiered

model, defining three actors: service provider, service consumer, and service

broker. This allows the Web Service to be a loose relationship, so that if a service

provider goes down, the broker can always direct consumers to another one.

Similarly, there are many brokers, so consumers can always find an available one.

For communication, Web Services use open Web standards as: HyperText Transfer

Protocol (HTTP), Extensible Markup Language (XML), Simple Object Access

Protocol (SOAP), Web Services Description Language (WSDL), and the Universal

Description, Discovery, and Integration (UDDI) project.

For both service consumer and service broker the Web service is available

as an interface that describes a collection of operations that are network-accessible

through standardized XML messaging. The Web service is described by using a

standard, formal XML notation based on SOAP, called service description. The

service description is realized by using WSDL (Web Services Description

Language) and provides all of the details necessary to interact with the service,

including message formats (that details the operations), transport protocols, and

location.

The Web service is created,

defined and deployed by service

provider (figure 2.26). A service

provider creates a Web service and

its service definition and then

publishes (1) the service in a

service registry (or directory) based

on the standard Universal

Description, Discovery, and

Integration (UDDI) specification.

Once a Web service is

published, a service requester may

find (2) the service via the UDDI

interface. The UDDI registry

provides the service requester with

a WSDL service description and a URI pointing to the service itself. The service

requester may then use this information to directly bind (3) to the service and

invoke it.

SOAP. Simple Object Access Protocol is a mechanism for sending information in

an extensible format. It allows applications to pass data and instructions to one

another. SOAP is the envelope syntax for sending and receiving XML messages

Figure 2.26 Web services model

 118

with Web services. That is, SOAP is the "envelope" that packages the XML

messages that are sent over HTTP between clients and Web services. SOAP can be

used to send information or remote procedure calls encoded as XML. A typical

SOAP message has the structure:
<SOAP:Envelope xmlns:SOAP=http://schemas.xmlsoap.org/soap/envelope/>
 <SOAP:Header>

 <!-- SOAP header go here -->
 </SOAP:Header>
 <SOAP:Body SOAP:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/>

 <!-- SOAP body go here -->
 </SOAP:Body>
</SOAP:Envelope>

The SOAP Envelope is used for defining messages. It contains an optional

SOAP Header and a SOAP Body. Messages are sent in the SOAP body,

and the SOAP head is used for sending other information that wouldn't be

expected in the body. For example, if the SOAP:actor attribute is present in

the SOAP header, it indicates who the recipient of the message should be.

SOAP handles data by encoding it on the sender side and decoding it on

the receiver side. The data types handled by SOAP are based on the W3C

XML Schema specification. Simple types include strings, integers, floats,

and doubles, while compound types are made up of primitive types.

Because they are text based, SOAP messages generally have no problem

getting through firewalls or other barriers. They are the ideal way to pass

information to and from web services.

WSDL. Web Service Description Language was created to provide information

about how to connect to and query a web service. It allows Web service to be

described so that it can be used by other applications. The WSDL file defines a

service, made up of different endpoints, called ports. The port is made up of a

network address and a binding. In turn, the binding identifies the binding style and

protocol for each operation.

UDDI. Universal Description, Discovery, and Integration standard defines

registries in which services can be published and found. It allows Web service to

be listed in a directory of Web services so that they can be easily located. The

UDDI specification was created by Microsoft, Ariba, and IBM. UDDI defines a

data structure and Application Programming Interface (API). The UDDI plays the

role of service broker and its function is to enable service consumer.

Web services use a “plug-and-play” like architecture on three layers, as

shown in figure 2.27, that differs from the architecture of proprietary applications

(such as CORBA or DCOM). These layers are:

- 1
st
 layer consists of software standards and communication protocols such

as XML, SOAP, WSDL and UDDI allowing information to be easily

exchanged between applications;

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/

 119

- 2
nd

 layer consists of a service grid to create the environment essential for

carrying out critical business activities, utilities for transporting messages,

utilities for identifying the available services, shared utilities for security,

etc;

- 3
rd

 layer consists of application services such as credit card processing,

production scheduling or, generally, applications that automates specific

business functions.

The companies can use the Web services in conjunction with their existing

informatics systems by connecting this to outside services as the needs to do that

arises.

Figure 2.27 Web services architecture

 120

 121

2 Internet – ARCHITECTURE, OFFERED SERVICES,

COMMUNICATION AND NAVIGATION ………………… 69

2.1 How WANs (and Internet) are organized .. 69

Client/Server Technology .. 71

2.1.1 The Logical Structure of Web Servers .. 76

2.1.2 The “transport” protocols .. 85

2.1.3 The IP addressing .. 85

2.1.4 The DNS ... 89

2.1.5 URL ... 91

URI – Uniform Resource Identifiers .. 92

2.2 Service protocols .. 94

2.2.1 TCP/IP - HTTP ... 94

2.2.2 SMTP/POP .. 95

SMTP ... 95

POP (Post Office Protocol) .. 97

2.2.3 FTP .. 98

Using FTP line commands ... 99

2.2.4 NNTP .. 101

2.2.5 RPC and Multimedia ... 103

2.2.6 Applications gateways .. 104

2.2.7 Applets .. 107

2.2.8 Wireless Web .. 108

2.3 Web pages, sites and Web browsers – an introduction 109

Web pages and web site - definitions ... 109

Web browsers ... 110

Finding information on the Internet ... 111

2.4 Web services – an introduction .. 116

3 BUSINESS CATEGORIES AND MODELS IN Internet

3.1 Business Categories

The Internet is creating a new ‘universal’ technology platform on which to

build all sorts of new products, services, strategies, and organizations. It is

reshaping the way information systems are being used in business and daily life.

By eliminating many technical, geographic and cost barriers obstructing the global

flow of information, the Internet is inspiring new uses of information systems and

business model. The Internet provides the primary technology platform for the

digital firm. In the following paragraphs are introduced the main concepts used to

define business-categories and business environment in Internet.

Digital firm. A digital firm is one where nearly all of the organization’s

significant business relationships with customers, suppliers, and employees are

digitally enabled and mediated. In a digital firm, any piece of information required

to support key business decisions is available at any time and anywhere in the firm.

Core business processes are accomplished through digital networks spanning the

entire organization or linking multiple organizations.

Business processes. A business processes refer to the unique manner in which the

work is organized, coordinated, and focused to produce a valuable product or

service. Key corporate assets – intellectual property, core competencies, financial

and human assets – are managed through digital means. Digital firms sense and

respond to their environments far more rapidly than traditional firms, giving them

more flexibility to survive in turbulent times. Digital firms are distinguished from

traditional firms by their near total reliance on a set of information technologies to

organize and manage.

Electronic market. By linking thousands of organizations and millions of

individuals into a single network the Internet creates the foundation for a vast

marketplace. An electronic market is an information system that links together

many buyers and sellers to exchange information, products, services, and

payments. It allows participating sellers and buyers to exchange goods and services

with the support of information technology. Electronic markets have three main

functions:

1) matching buyers and sellers;

2) facilitating commercial transactions;

3) providing legal infrastructure.

The main players in an electronic market are represented by businesses,

individuals, and government organizations.

 122

Electronic business (e-business). The extensive use of business information

system through an organization is commonly referred to as electronic business or

e-business. There are two common definition of e-business concept:

- “all electronically mediated information exchange, both within an

organization and with external stakeholders supporting the range of

business processes”;

- “the use of Internet and other digital technology for organizational

communication and coordination and management of the firm”.

The processes that can be enhanced by e-business are standard processes

that occur within any organization.

[BIS-TDM; KLJL] There are seven main operating

organizational processes:

1. Understand markets and customers;

2. Develop vision and strategy;

3. Design products and services;

4. Market and sell;

5. Produce and deliver services;

6. Produce and deliver services (services organization);

7. Invoice and service customer.

These processes have companion the following support and

management processes:

1. Develop and manage human resources;

2. Manage information;

3. Manage physical and financial resources;

4. Execute environmental management program;

5. Manage improvement and change.

According to the resource-based-theory e-business is about [PG-07]:

- developing and applying internal and external resources for competitive

advantage;

- applying an e-business model that supports the current or desired value

configuration of a value chain, value shop, and/or value network;

- making progress over time, as both technology and market conditions

evolve .

This requires an understanding of system dynamics, where feedback loops

between company actions and market reactions create or destroy infrastructure

initiatives.

Electronic business brings a unique set of challenges to the information technology

infrastructure (such as site capacity, scalability, and fault-tolerance, business

information systems, etc) and his viability depends on the ability of the underlying

systems to offer timely and reliable services.

Electronic commerce (e-commerce). Electronic commerce (e-commerce) is the

process of buying and selling goods and services electronically with computerized

business transactions using Internet, networks, and other digital technologies. It

also encompasses activities supporting those market transactions, such as

 123

advertising, marketing, customer support, delivery, and payment. E-business

requires some “specialized” network support such as intranet and extranet and

refers to a broader definition of EC, not just the buying and selling of goods and

services, but also servicing customers, collaborating with business partners, and

conducting electronic transactions within an organization.

Intranet. An intranet is an internal network based on Internet and World Wide

Web technology and standards (figure 3.1). An intranet allows organizations

include all geographically distributed branches or divisions (the local networks

deserving them) in a “global” area network (Wide Area Network, as suggested by

the background cloud, inside of the

organization boundaries) in which the

users work as they are in a local area

network. The local area networks can

be connected by using organizations

private connections or by using VPN

over the Internet. The intranets are

inexpensive, scalable to expand or

contract as needs change, and

accessible from most computing platforms. The intranets provide instant

connectivity by the usage of the Web software that provide a uniform interface that

allows unifying the computers, does not mother the platform to which they

conform. The intranets provides a reach set of tools for creating collaborative

environments in which members of an organization can exchange ideas, share

information, and work together on common projects and assignments regardless of

their physical location. Companies can connect their intranets to internal company

transaction processing systems, enabling employees to take actions central to a

company’s operations. Intranets can also be used to simplify and integrate business

processes spanning more than one functional area and, in that way, a better

informatic modeling of his information system. In companies where the processing

is done manually or by non-integrated informatic support systems the same data are

collected and processed in a redundant way and having a “distributed

responsiveness”. The cross-functional processes can be coordinated electronically,

increasing organizational efficiency (at least by eliminating redundant operations

and tasks) and responsiveness (from a distributed one to a centralized one), and

they can also be coordinated with business processes of other companies. By the

usage of intranet the company can better model, in his integrated informatic

system, the systems interdependencies and interrelationships or can integrate his

individual software packages by defining electronic pathways for automatic online

communication. The foreground graphic (the rectangles and lines connecting them)

represent the various informatic subsystems deserving the company operation and

control focused to a centralized control (does no matter if the applications

processing and/or data-sources can run in parallel, distributed or centralized). The

information inputs and outputs of the company do not exclude electronic data

interchange between companies (suppliers and/or customers).

Figure 3.1 Intranet

 124

Extranet. When a company gives access to third parties (such as suppliers and

customers) to his intranet the obtained network is called extranet (figure 3.2). An

extranet is a private intranet that is accessible to authorized outsiders, as suggested

in the figure by the background cloud crossing the boundaries and including parts

of external networks. The front (suppliers) and end (clients; buyers) sides linked to

complex networks not necessarily distinct (can be the same one Internet!) tray to

suggest two of the roles played by the organization’s partners (suppliers and

consumers). The usage of extranet allows an extension of the integration of

different categories of informatic systems. This extended integration gives many

benefits to the company (reducing time for operation, increasing speed of feed-

back, increasing the accuracy of cross-boundary data and information etc). For

example, if a supplier sends you the invoice electronically you do not need to

retype the transactions included; instead of typing you must check and validate the

electronic data and accept as input for your applications.

Trading partners can communicate with each other, bypassing

intermediaries and inefficient multilayered procedures. Web sites are available to

consumer 24 hours a day. Some information-based products, such as software,

music, books, and video, can actually be physically distributed via Internet.

Internet technology has proved especially useful for supply chain management and

collaborative commerce.

Private industrial network. A private industrial network or net marketplace (or e-

hubs) is a web-enabled network linking systems of multiple enterprises (firms,

companies, organizations etc) for the coordination of enterprises trans-

organizational business processes. The network is owned by the buyer and it

permits the firm and designated suppliers, distributors and other business partners

to share product design and development, marketing, production scheduling,

inventory management, and unstructured communication including graphic and e-

mail. A net marketplace provides a single digital market place based on Internet

technology for many different buyers and sellers.

Figure 3.2 Extranet

 125

The e-business – e-commerce relationships

 Figure 3.3 suggest the organization system faced to his e-commerce/e-

business relationships with the consumers, as a sell side end, and suppliers, as a

buy side front:

1) Inside of the company’s system boundaries suggested two situations:

- the usage of traditional support software systems grouped in so called

back-office systems interfaced to the buy side by specialized software

designated to the management of the relationships with suppliers (SCM-

Supply Chain management) and to the sell side by the specialized software

designated to the management of the relationships with the costumers

(CRM-Customer Relationship Management). Bellow is a brief presentation

of both SCM and CRM solutions;

- the usage of ERP (Enterprise Resource Planning) systems that provides a

single informatic solution from a single software developer with integrated

functions for major business functions such as production, distribution,

sales, finance & accounting, and human resources management. The

implementation of enterprise resource planning (ERP) systems allows

enterprises to integrate and optimize their internal operations, such as

production, Engineering, financial controlling and human resources. The

enterprise resource planning systems are integrating web connections to

leverage the speed and ubiquitous nature of the Internet (for example,

Figure 3.3 The extended company and management of customers and suppliers

relationships

 126

SAP’s R/3 system is Internet compatible and can be combined with other

types of software under the enterprise).

Both situations suppose the existence of intranets and extranets support.

2) the buy side e-commerce suggest the e-commerce transactions between

purchasing organization and its suppliers. These relationships are mapped across

the support offered by both intranet and extranets so that is possible to realize

Internet-based supply-chain management allowing all supply-chain participants

receive and exchange information on purchasing, production, and shipping at real-

time. The organization suppliers can deliver directly their products and/or services

or by using intermediaries. In turn the organization suppliers can have relationships

with their own suppliers (suppliers’ suppliers). The usage of SCM e-commerce is

the source of disintermediation, defined as the removal of organizations or business

processes layers responsible for certain steps in the value chain;

3) the sell side e-commerce suggests the e-commerce transactions between supplier

organization (manufacturer) and its customers. This side includes the direct sell to

customers by applying the disintermediation (the companies can obtain higher

profit while charging lower prices) or the usage of different categories of

intermediaries (Distributors and/or Retailers).

Electronic commerce,

global competition, and the rise

of digital firms have made

companies think strategically

about their business processes

for managing their relationships

with customers and suppliers.

The relationships

between e-commerce (EC) and

e-business (EB) can be described

as illustrated in figure 3.4.

Figure 3.5 shows the relationship

between e-commerce and e-

business by separating the activities specific to each other.

CRM (Customer Relationship Management). Instead of treating customers as

exploitable source of income, businesses are now viewing them as long-term assets

to be nurtured through customer relationship management (CRM). CRM focuses

on managing all of the ways that a firm deals with its existing and potential new

customers. CRM is both a business and technology that uses information systems

to coordinate all of the business processes surrounding the firm’s interactions with

its customers in sales, marketing and service.

SCM (Supply Chain Management). Supply chain management is the close

linkage and coordination of activities involved in buying, making, and moving a

product. It integrates supplier, manufacturer, distributor, and customer logistic

processes to reduce time, redundant effort, and inventory costs. The supply chain is

Figure 3.4 e-commerce – e-business relationships

 (Source of figure [BIS-TDM])

 127

a network of organizations and business processes for procuring materials,

transforming raw materials into intermediate and finished products, and

distributing the finished products to customers.

It links suppliers, manufacturing plants, distribution centers, conveyances, retail

outlets, people, and information through processes such as procurement, inventory

control, distribution, and delivery to supply goods and services from source to

consumption. Materials, information, and payments flow through the supply chain

in both directions. Goods start out as raw materials and move through logistics and

production systems until they reach customers. The supply chain include reverse

logistic in which returned items flow in reverse direction from buyer back to the

seller. The supply network is a critical component of any e-business strategy.

Information sharing has always been the key to coordination. With the

advancement of communication technologies, such as intranet, extranet, electronic

data interchange (EDI), and virtual private network (VPN), companies have

already started to coordinate their purchasing, production, and distribution

activities to reduce cycle times and cut operational costs.

Business categories

 There are many ways in which electronic commerce transactions can be

classified such as [BIS-TDM; KLJL]:

- the nature of participants (figure 3.6): business-to-consumer (B2C), business-to-

business (B2B), consumer-to-consumer (C2C);

- the participant’s physical connection – mobile commerce (m-commerce).

Figure 3.5 e-commerce is a part of e-business (source [PG-07])

 128

Business-to-consumer (B2C) electronic commerce involves retailing products and

services to individual shoppers;

Business-to-business (B2B) electronic commerce

involves sales of goods and services among

business. Companies can sell to other business

using their own web sites as electronic storefronts

or they can execute purchase and sell transactions

through private industrial networks or net

marketplace. Net marketplace is the faster-growing

type of B2B.

Consumer-to-consumer (C2C) electronic

commerce involves consumers selling directly to

consumers.

The electronic business value chain described in figure 3.3 bottom can be described

considering the business categories involved between participants, as shown in

figure 3.7.

Mobile commerce (m-commerce) involve using of handheld wireless devices for

purchasing goods and services. Both B2B and B2C transactions can take place

using m-commerce technology.

3.2 Business Models

A business model describes how the enterprise delivers a product or

service, showing how the enterprise creates wealth. Business models have been

defined and categorized in many different ways, the models are implemented in a

variety of ways, and they are perhaps the most discussed and least understood

aspect of the web.

A definition of business model together with the evolution of business

model concept can be given in reference [OPT]: “A business model is a conceptual

tool that contains a big set of elements and their relationships and allows

expressing the business logic of a specific firm. It is a description of the value a

company offers to one or several segments of customers and of the architecture of

the firm and its network of partners for creating, marketing, and delivering this

value and relationship capital, to generate profitable and sustainable revenue

streams”.

In [PG-07] you can found the following alternative definitions:

”A business model can be defined as the method by which a firm builds

and uses its resources to offer its customers better value than its competitors and to

Figure 3.6 Business categories

Figure 3. 7 The electronic business value chain

 129

make money doing so. It details how a firm makes money now and how it plans to

do so in the long run. The model is what enables a firm to have a sustainable

competitive advantage, to perform better than its rivals in the long term.”

”An e-business model is a description of the roles and relationships among

a firm's consumers, customers, allies, and suppliers that identifies the major flows

of product, information, and money, and the major benefits to participants.”

A business model draws on a multitude of business subjects, including

economics, entrepreneurship, finance, marketing, operations, and strategy.

Chesbrough and Rosenbloom [CheRo] outlined the following six

components of the business model:

1. Value proposition - a description of the customer problem, of the

product that addresses the problem, and of the value of the product

from the customer's perspective;

2. Market segment - the target group of customers;

3. Value chain structure - the position and activities in the value chain

of the firm and how that will capture part of the value that it creates in

the chain;

4. Revenue generation and margins - how revenue is generated (sales,

leasing, subscription, support, etc.), the cost structure, and target profit

margins;

5. Position in value network - identification of competitors,

complementors, and any network effects that can be utilized to deliver

more value to the customer.

6. Competitive strategy - how the company will attempt to develop a

sustainable competitive advantage.

Managing an organization’s e-business adoption strategy has proven to be

a daunting task. Strategic decisions with far-reaching implications must be made on

a timely basis.

The collapse of NASDAQ’s high-tech (dot-com) stocks during 2000/2001

offers painful proof of the extraordinary challenges associated with

managing e-business. Gone are the days of evaluating new venture start-

ups based on burn rates, over-inflated revenue estimates and the vita of a

silicon-valley cowboy. Indeed, the “irrational exuberance” in dot-com

company stock market valuations has come to fruition. The market has

forced companies to focus, once again, on the basics: cost, quality and

profitability. Lock-step with this back-to-the-basics pendulum swing, is the

utilization of a business model that is long-term focused, profit-based, and

includes the unique challenges (and opportunities) with conducting

commerce via the Internet.

The business model should enable the cost, quality and profitability basic

necessities, utilizing a long-term profit-based business plan, while simultaneously

accommodating the unique business issues associated with e-commerce.

As firms integrate e-business into their existing business, they migrate

from traditional physical business models to combined physical and virtual models.

 130

This shift increases the role of the information technology infrastructure because

information and online transaction processing become more important.

B2B interactions involve much more complexity [DMVA] than B2C and

typical B2B transactions include, among others, the following steps: i) review

catalogs, ii) identify specifications, iii) define requirements, iv) post request for

proposals (RFP), v) review vendor reputation, vi) select vendor, vii) fill out

purchase orders (PO), viii) send PO to vendor, ix) prepare invoice, x) make

payment, xi) arrange shipment, and xii) product inspection and reception.

Several models and classifications have been proposed for B2B commerce,

as Internet and e-market evolves. Figure 3.8 illustrates an electronic marketplace

for B2B trading as defined in [DMVA]. The model could be oriented to a vertical

market (e.g., wholesale trade, chemicals, construction, and electronics) or to a

horizontal approach (e.g., office supply, and logistics).

Figure 3. 8 Electronic marketplace for B2B commerce

Model Description

Aggregators One company aggregates buyers in order to form a virtual

buying entity and/or aggregates suppliers to constitute a

virtual distributor. The aggregator takes the responsibility

for selection and fulfillment, pricing, and marketing

segmentation.

For example, in the science marketplace, one company

became the central buying location for thousands of

buyers to implement their own purchasing rules and

obtain volume discounts. Another example is an electronic

company that offers a total home buying service, from

search to financing, under one site.

Hubs or

Process

Integration

Focuses on producing a highly integrated value

proposition through a managed process. Hubs have been

defined as neutral Internet-based intermediaries that focus

on a specific industry or a specific business process. Hubs

host electronic markets and create value by reducing costs

 131

of transactions between sellers and buyers. There are

examples of vertical hubs that serve a vertical market or a

specific industry, such as energy, steel,

telecommunications, and plastic. On the contrary,

functional hubs specialize in horizontal markets across

different industries. Functional hubs focus on business

processes such as maintenance, repair and operating,

procurement. For instance, an electronic business

company that provides office supplies to many industries

is a good example of a functional hub in a B2B

commerce.

Community or

Alliance

In the community model, alliances are used to achieve

high value integration without hierarchical control.

Members and end users play key roles as contributors and

customers. Basically, communities produce knowledge

with economic value, such as Linux, MP3, and Open

Source.

Content Content is the end product of this model of B2B

commerce. It has the purpose of facilitating trading.

Revenue can be generated from subscriptions,

membership, or advertising. For example, there are e-

companies that sell information about contracts to bid,

market intelligence and analysis, and jobs by industry.

Auctions or

Dynamic

Pricing

Markets

Auctions or dynamic pricing markets handle complex

exchanges between buyers and sellers in B2B commerce.

Auctions are dynamic and efficient mechanisms for

mediating and brokering in complex marketplaces, like

supply-chain and procurement systems. Bundle auctions

allow agents to bid for bundles of items and are useful for

B2B applications such as automatic supply-chain or

procurement.

3.2.1 Classification of e-business models

There exists many classification criteria of Internet business models and

we don’t have yet a common point of view.

In determining an appropriate e-business model, several criteria can be

used, such as [PG-07]:

- Involved parties, such as business-to-business, business-to-consumer,

and/or consumer-to-consumer;

- Revenue sources, such as transaction fee, product price, and/or exposure

fee;

 132

- Value configuration, such as value chain, value shop, and/or value

network;

- Integration with customers and/or partners;

- Relationships, such as one-to-many, many-to-many, and/or many-to-one;

- Knowledge, such as know-how, know-what, and know-why.

One classification of Internet business models is presented by K. Laudon

and J. Laudon ([KLJL]):

 Virtual storefront: Sells physical products directly to consumers or to

individual businesses (Amazon.com, EPM.com)

 Information broker: Provides product, pricing, and availability

information to individuals and businesses. Generates revenue from

advertising or from directing buyers to sellers (Edmunds.com, Kbb.com,

Insweb. com, IndustralMall.com)

 Transaction broker: Saves users money and time by processing online

sales transactions, generating a fee each time a transaction occurs. Also

provides information on rates and terms (etrade.com, Expedia.com)

 Online marketplace: Provides a digital environment where buyers and

sellers can meet, search for products, display products, and establish prices

for those products (eBay.com, Priceline.com, ChemConnect.com,

Pantellos.com)

 Content provider: Creates revenue by providing digital content, such as

digital news, music, photos, or video, over the Web (WSJ.com, CNN.com,

TheStreet.com, Gettyimages.com, MP3.com)

 Online service provider: Provides online service for individuals and

businesses. Generates revenue from subscription or transaction fees, from

advertising, or from collecting marketing information from users

(@Backup.com, Xdrive.com, Employease.com, Salesforce.com)

 Virtual community: Provides online meeting place where people with

similar interests can communicate and find useful information

(Motocross.com, iVillage.com, Sailnet.com)

 Portal: Provides initial point of entry to the Web along with specialized

content and other services (Yahoo.com, MSN.com, StarMedia.com)

Another way to classify the Internet business models, proposed by Weill

and Vitale ([WV-01]) and reconsidered and updated in [PG-07], identifies a finite

number of atomic e-business models that can be combined as building blocks to

create tailored e-business modes and initiatives, as follows:

1. Direct to customer: buyer (individual or business) and seller (does no

matter is a retailer, a wholesaler, or a manufacturer) communicate

directly. Examples of the direct-to-customer model are Dell Computer

Corporation and Gap, Inc.

2. Full-service provider: provides total coverage of customer needs in a

particular domain, consolidated via a single point of contact. Examples

of the full-service provider are the Prudential Advisor and GE Supply

Company.

 133

3. Whole of enterprise: The single point of contact for the e-business

customer is the essence of the whole-of-enterprise atomic business

model. Although many of this model's breakthrough innovations have

occurred in public-sector organizations, the model is applicable in both

the for-profit and the public sectors.

4. Intermediaries such as portals, agents, auctions, aggregators, and

other intermediaries. E-business is often promoted as an ideal way for

sellers and buyers to interact directly, shortening old-economy value

chains by disintermediating some of their members. Examples of

intermediaries are electronic malls, shopping agents, specialty

auctions, electronic markets, electronic auctions, and portals.

5. Shared infrastructure: The firm provides infrastructure shared by its

owners. Other suppliers, who are users of the shared infrastructure, but

not owners, can also be included. Customers who access the shared

infrastructure directly are given a choice of suppliers and value

propositions. The owner and the non-owner suppliers are generally

represented objectively.

6. Virtual community: By using IT to leverage the fundamental human

desire for communication with peers, virtual communities can create

significant value for their owners as well as for their members. Once

established, a virtual community is less susceptible to competition by

imitation than any of the other atomic business models. In this business

model, the firm of interest—the sponsor of the virtual community—

sits in the center, positioned between members of the community and

suppliers.

7. Value net integrator: control the virtual value chain in their industries

by gathering, synthesizing, and distributing information. Value net

integrators add value by improving the effectiveness of the value chain

by coordinating information. Examples of value net integrators are

Seven-Eleven Japan and Cisco Systems.

8. Content provider: a firm that creates and provides content

(information, products, or services) in digital form to customers via

third parties. The physical-world analogy of a content provider is a

journalist, recording artist, or stock analyst. Digital products such as

software, electronic travel guides, and digital music and video are

examples of content. A virtual-world example of a content provider is

weather forecasters such as Storm Weather Center.

3.2.2 Common of Internet e-business models

The most common of Internet e-business models are the following:

The Merchant. A merchant is a wholesaler or retailer of goods and services.
The merchant provides a website with product information and an online ordering

mechanism. Users select the products they want to buy and place an order. The

product price can be fixed or negotiable. The merchant makes his money the same

 134

way as traditional "brick-and-mortar" shops: through the profit margin in the

product price. This model is mainly suited for physical goods and services, such as

books, computers or a pizza delivery service. The merchant can directly reach end

users and sell to them without needing wholesalers or retailers.

Click-and-mortar merchants. "Click-and-mortar" shops combine a website with

a physical store.
In that way these business have the additional advantage that they (usually)

already have an established brand name, and that they can use their physical store

to promote the website. Because they have a physical location the users can return

unwanted or defective products simply by going to the store, rather than mailing it

to a web site operator. Traditional mail-order businesses (catalog merchants)

already have the necessary facilities to process orders over the Internet (basically,

orders come in by e-mail rather than by letter or phone, the shipping and handling

is the same).

Build to order merchants. Offering of goods and services for sale that can be

customized as client suggest.
A manufacturer (such as a computer vendor, for example) can use this model by

offering his goods or services for sale and having the ability to order customized

versions. The customized product is then assembled individually and shipped to

the customer. This provides added value to consumers and allows the

manufacturer to create only those products that will be sold.

The service provider. Offering services via Internet.
For some services, the merchant model is quite appropriate. For example, a pizza

delivery service can operate on a pay-per-item basis. However, many Internet-

based services cannot easily be handled in this way. It is often difficult to define

the "product" that is sold, or to set a price for this product. For instance, a news

site can offer the service of access to its archive, but even one dollar is probably

too much for retrieving one article. Some service providers provide advertising-

based access to their service, hoping to recover the costs through revenue from the

advertisers. However, this appears to be a doomed strategy, since few ad-driven

sites are able to get sufficient income (Yahoo! being one of the very few

successful ones).

Subscription-based access. Allow client access their services, in a gradual

manner, based on client subscription amount.
Many service operators provide subscription-based access to their service. A user

pays a fixed amount per month or year and in return gets unlimited actions to the

service. Alternatively, a base fee can be paid per month and all access beyond a

certain limit is subject to a surcharge. This model is typically used when accessing

databases with articles, news, and patents but also for online games or adult

websites. However, the viability of subscription-based models is doubtful (a 2000

survey by Jupiter Communications found that almost half of all Internet users

would not pay to view content on the web). To entice users into subscribing,

"teasers" or selective portions may be made available for free. For example,

showing headlines for articles in a news archive or allowing access to patent

documents one page at a time.

Prepaid access. The offered services require payment by units (minute, data

transfer amount, etc).

 135

Some services, in particular telephony, require payment by the minute. This can be

handled via a subscription, but a viable alternative is prepaid access. In this

scheme, users pay a certain amount of money, which gives them access to the

service for a certain amount of time, or access to a certain amount of content.

When the amount is spent, the user can prepay another amount for further access.

Often, implementations involve a smartcard on which the available credit is stored.

Payment is realized by buying such a smartcard. The available credit on the

smartcard is reduced during usage of the service. Prepay schemes have the

advantages that they do not require subscription details to be maintained, and that

they give users greater control over how much to spend on the service.

The broker. Brokers or intermediaries create markets by bringing buyers and

sellers together and facilitating transactions between them. Those can be business-

to-business (B2B), business-to-consumer (B2C), or consumer-to-consumer (C2C)

markets.
A broker makes money by charging a fee for every facilitated transaction, for

instance as a percentage of the price of the transaction. Some special types of

brokers are:

- Group buying - bringing individual potential buyers together in order to buy

as a group, which should result in a lower price for each buyer (volume

discounts, etc).

- Classified ads - sellers can advertise their product on a site where buyers can

find it. The broker makes money in various ways: the seller pays a placement

fee, or the broker receives a portion of the price paid by the buyer.

- Bounties - the broker offers a reward for finding a person, thing, idea, or other

desired, but hard to find item. The broker may list items for a flat fee, or

charge a percentage of the reward if the item is successfully found.

The broker is also used in the architecture of offered web services as described in

the chapter 2, §2.4.

The sales representative. Business based on a commission.
Sales representatives often work on a commission basis: they sell an item for

someone else and get a percentage of the price. On the Web, this model has

developed into what is known as affiliate programs or referral fees. Someone

creates a website on a particular topic and adds links to products on a merchant

site which are related to his topic, so his visitors can buy those. For example, a

music reviewer can add a link in a review to an online music store where the CD

being reviewed can be ordered. If the reader likes the review, he can following the

link and buy the CD. The merchant then pays the reviewer a commission or

referral fee to the reviewer for referring to his site.

This model is realized as follows:

- The reviewer registers at the merchant site and receives a unique code;

- He adds this code to all the links to the merchant site whenever he links to a

product at that site;

- When a reader follows the link, the merchant site sees the code and couples

the reader's actions to the code;

- When the reader buys something the site registers the sale together with the

code. Later all sales matching that code can be collected so the percentage can

be computed and credit to the reviewer.

 136

There are many variations on this theme. A fixed percentage can be paid to all

sales resulting from the referral or a high percentage can be given to the actual

product to which he linked, possibly with a low percentage on other sales that

resulted from the link. This model is used by Amazon, Proxis, CD-Now and

others. Some book authors link to their own book this way, making more money to

the referral fee than to the royalties they get in. Subscription-based services also

sometimes offer a referral fee to anyone who brings in a new subscriber. It is easy

and safe to participate in an affiliate model, even for individuals. Anyone who can

set up a website can link to a product, and if things go well, make money. If not,

then no effort or investment is wasted. This explains the popularity of the model

on the World-Wide Web.

The advertiser. Advertising-driven sites.
Advertising-driven sites are currently one of the cornerstones of E-commerce. The

principle is simple and well known: the site offers free access to something and

shows advertisements on every page and when a user clicks on an advertisement,

he goes to an advertiser's page. The advertiser pays the site operator for showing

his advertisement (eyeballs) or for every time someone clicks on the advertisement

(click-through). The same idea is popular in computer programs. Users can

download and use the program for free but advertisements are shown during

operation or startup of the program. In particular, advertisements can be shown

when the user needs to wait for some time-consuming operation, such as printing

or scanning.

Targeted advertising. Sites realizing targeted advertising.
It is well known that an advertisement related to the topic at hand on the site will

get higher exposure and click through since such advertisements are targeted to the

site visitors. So, the site operator earns more money if he places targeted

advertisements. When displaying advertisements in a computer program, it is

possible to target the advertisements to the purpose of the program, e.g., a

spreadsheet shows advertisements for a stock brokering service. Racing games,

soccer games and the likes commonly show billboards in the game to emulate the

look of the real playing field. The advertisements thereon can be chosen as "real"

advertisements.

Search engines use this idea as well, but relate the advertisements to the keywords

entered in a query. For instance, if someone searches information on holidays, an

advertisement is shown for a hotel chain on the page with search results. The

advertisement can further be targeted based on the user profile for the user doing

the search (e.g., if the profile shows the user likes to swim, an advertisement is

shown for a beach hotel).

The existence of advertising-driven sites created a business opportunity for

companies such as DoubleClick, which collects advertisements from many sources

and arranges for placements on different sites. The sources pay DoubleClick for

placing their advertisements, and this revenue is then shared with the site owners.

Additionally, DoubleClick tracks the users that view all the advertisements, which

allows it to built a user profile. This profile can then be used to more accurately

target advertisements to these users.

Updating advertisements. Scheduled advertising for off/on line presentation.
It is desirable to be able to present the user fresh advertisements periodically, even

when he is not connected to the network. To this end, his browser or other client

 137

can download multiple advertisements simultaneously and display them one at a

time when he is offline. A screensaver can also be used to present advertisements

when the system is idle. The screensaver periodically downloads new

advertisements and/or news messages, and presents them to the user.

Portal sites. Sites which provide the main method of access to other web sites.
A portal offers one-stop access to different content and services, such as searching,

news, e-mail, stock information, message boards or chat. By offering the option to

personalize the interface and presented content (see, for example, my.cnn.com or

my.yahoo.com), the portal is made more attractive to the user. The portal site can

target its advertisements based on the personalization information. Examples of

portals include Yahoo (www.yahoo.com), MSN (www.msn.net), Netscape

Netcenter (home.netscape.com), IBM (www.ibm.com), ASE (www.ase.ro) etc.

Attention/incentive marketing.
In this model, a user downloads and views many advertisements and clicks on

them, which generates revenue for the intermediary which provided these

advertisements to the users. This revenue is then shared with the users in

proportion to the number of advertisements they viewed and clicked on. Often, the

user is asked to enter demographic information, which the intermediary shares

with the advertisers.

A difficult problem in this area is how to guard against fraud. A user could employ

a computer program that automatically clicks on all advertisements sent by the

intermediary. This way, he collects a large amount of money without actively

seeing the advertisements. Thus, it is recommended to measure the time between

showing the advertisement and the user's reaction. If that time is too short, or the

same every time, it is likely that something is amiss.

If the advertisement is in the form of a video or audio fragment, the user could also

be asked to press a particular button or answer a question at some point during the

advertisement.

Another solution involves the use of a smartcard. The user must insert a smartcard

in a television system or the like, and the reward (usually in the form of credits,

although digital cash can also be used) is recorded on the smartcard. When the

advertisement has been shown, the card is ejected, so that the user must re-insert

the card for the next advertisement.

Free access. Users are given something for free, but the something comes with

advertisements.
A few examples: free web space providers typically provide advertising banners at

the top or bottom of its users' sites (or as a separate, pop-up window). Free Internet

access providers show advertisements on the starting page its users see when they

go online. Electronic greeting cards are sent with a personal message and an

advertisement. Since the user base is very diverse, it is hard to accurately target

advertisements, making the expected revenue low.

The auction room. In an auction, the price of a product is made dependent on

what buyers are willing to pay.
There are a number of models for performing an auction, the two most well-

known being the "open" auction and the "reverse" auction.

Open auctions. In the "open" auction, participants repeatedly place higher bids for

a product under auction. The person who places the highest bid is awarded the

product. Networks such as the Internet make it possible for a large number of

http://www.yahoo.com/
http://www.msn.net/
http://home.netscape.com/
http://www.ibm.com/
http://www.ase.ro/

 138

bidders to participate simultaneously in one auction. Handling bids can even be

automated, so that no human auctioneer is necessary.
Famous auction site eBay offers the option to participate in an auction

automatically. The bidder enters an initial bid, an amount with which to increase

the bid and a maximum amount. The system then automatically raises the bid with

the indicated amount whenever someone else places a higher bid, until either the

bidder has won the auction or his maximum is reached.

Reverse auctions. In a "reverse" or "Dutch" auction, the price is initially set at a

very high level, and drops at regular intervals. Participants can pick the price at

which they want to buy, and have to determine the chance that someone else will

find a higher price acceptable.
In a variant of the reverse auction, customers indicate a product or service and a

price, which they are willing to pay. Suppliers indicate a price at which they are

willing to provide that product or service, and the auction service tries to match

customers and suppliers. The intermediary pockets the difference between the

price paid by the customer and the price paid to the supplier. This model is popular

with high-priced items like automobiles or airline tickets.

The virtual mall. A virtual mall is a site that hosts many merchants, service

providers, brokers and other businesses. The virtual mall operator typically charges

a fee for setting up and maintaining the merchant's "booth", and for including him

in the site-wide catalog. Additionally, he may charge a fee for every transaction the

merchant performs. Virtual malls can operate within the context of a larger site,

such as a portal.
The virtual mall can act as an intermediary between individual customers and the

business it hosts, for instance by facilitating payment and guaranteeing a full

refund if a merchant does not deliver in time.

When the virtual mall offers services such as payment facilitation or catalog

browsing, it has the ability to create aggregated user profiles on the customers that

visit any of the businesses in the mall. This can lead to the development of highly

specialized malls (e.g., oriented at kids or sports lovers).

The virtual community. A virtual community is a website which has gathered a

group of users with a common interest who work together on the site. Typically,

users will share information and make contributions in other ways. Since they have

contributed to it themselves, users feel highly loyal to the site and will visit it

regularly. This offers possibilities for advertising.
Probably the largest virtual community can be found on Slashdot, a Linux-oriented

site on which users share interesting news articles and websites (which invariably

fail under the load of hundreds of thousands of people visiting it shortly after its

URL got posted on Slashdot - this is called "slashdotting").

A specialized type of virtual community is the knowledge network or expert site,

where people, layman and expert, share their expertise and experiences. These

sites are typically ran like a forum where participants can get questions answered

or raise topics for discussion. Long-time participants often meet together in real

life. Usenet newsgroups are a good example of such a community.

When a knowledge network is devoted to a particular product or company, the

active participation of employees of that company is often very much appreciated

and can offer a great PR opportunity for the company.

 139

A simple way to monitor a virtual community is to require registration for access

to the website, preferably for free. This allows inter-session tracking of users' site

usage patterns and thereby generates data of greater potential value in targeted

advertising campaigns. Registration can be made more attractive by offering

limited access or "teasers" to unregistered users, by offering the option to

customize the site after registration, or by allowing only registered users to

actively participate in chat or message boards.

The infomediary (information intermediary). An infomediary collects, analyzes

and sells information on consumers and their buying behavior to other parties who

want to reach those consumers.
Typically, the infomediary offers the consumers something for free, such as free

hardware or free Internet access. The later is especially useful, since it allows the

infomediary to control and monitor the user's online activities. After all, the

consumer connects through the infomediary's network. The information which the

infomediary collects is extremely valuable for marketing purposes. Often the

infomediary makes money with an advertising-based model, in which the

advertisements are targeted based on the information it collected itself.

The infomediary needs to keep track of its users. A simple way to achieve this is to

require registration for access to the website, preferably for free. This allows inter-

session tracking of users' site usage patterns and thereby generates data of greater

potential value in targeted advertising campaigns. Registration can be made more

attractive by offering limited access or "teasers" to unregistered users, by offering

the option to customize the site after registration, or by allowing only registered

users to actively participate in chat or message boards.

The infomediary model is useful in combination with a virtual community model

or virtual mall, since those models offer the ability to collect the necessary

information.

3.3 The E-Commerce Development And Functional Architecture

The e-commerce/e-business development

E-commerce/e-business is creating tremendous impact on our economy

and its subsequent economic rules. The volume of e-commerce as a percentage of

the nation’s GNI (GBP) grows at an increasing rate. Table 3.1 shows the evolution

of e-commerce between 2000 (marked by the beginning of the crash of so called

“dot-coms”) and 2004.

The nature of e-commerce/e-business is getting more and more complex as

the market evolves (see figure 3.9). The elements outlined in the figure axis have

been introduced in chapter 1 and will be extended also in chapter 3. Briefly, the

first generation – e-Commerce emerged as companies rushed to set up their

homepages to claim their web appearances, and the second generation e-business is

characterized by the emergence of “mission critical, industrial strength platforms”

that support new markets and new models.

It is now widely understood that a successful e-business is built on a

business model with a valid value proposition, a clearly defined e-business

 140

strategy, and an integrated information technology (IT) infrastructure that

facilitates the strategy.

The venue of

conducting e-business has also

been greatly expanded,

especially with the growth of

business-to-business (B2B) e-

commerce. From implementing

individual web-based

applications to transforming

traditional businesses into click-

and-mortar, enterprises are

continuously exploring new

opportunities and new markets

for e-business.

The evolution of e-commerce

Table 3.1 shows the

evolution of e-commerce

between 2000 (marked by the beginning of the crash of so called “dot-coms”) and

2004. The world e-commerce turn-over amount was 6.8 trillion US dollars in 2004

and estimated for 2005 to 8.5 trillion US dollars. According to previous table data

USA realizes 47% from total world e-commerce turn-over amount followed by

Japan 13%, and Germany 5.7%.

Table 3.1 The evolution of e-commerce (billion $)

2000

2001

2002

2003

2004

% of total

2004

Total ($-billions) $657.0 $1,233.6 $2,231.2 $3,979.7 $6,789.8 8.6%

from which:

North America $509.3 $908.6 $1,498.2 $2,339.0 $3,456.4 12.8%

 USA $488.7 $864.1 $1,411.3 $2,187.2 $3,189.0 13.3%

 Canada $17.4 $38.0 $68.0 $109.6 $160.3 9.2%

 Mexico $3.2 $6.6 $15.9 $42.3 $107.0 8.4%

Asia Pacific $53.7 $117.2 $286.6 $724.2 $1,649.8 8.0%

 Japan $31.9 $64.4 $146.8 $363.6 $880.3 8.4%

 Australia $5.6 $14.0 $36.9 $96.7 $207.6 16.4%

 Korean $5.6 $14.1 $39.3 $100.5 $205.7 16.4%

West Europe $87.4 $194.8 $422.1 $853.3 $1,533.2 6.0%

 Germany $20.6 $46.4 $102.0 $211.1 $386.5 6.5%

 England $17.2 $38.5 $83.2 $165.6 $288.8 7.1%

 France $9.9 $22.1 $49.1 $104.8 $206.4 5.0%

 Italy $7.2 $15.6 $33.8 $71.4 $142.4 4.3%

 Holland $6.5 $14.4 $30.7 $59.5 $98.3 9.2%

Latin America $3.6 $6.8 $13.7 $31.8 $81.8 2.4%

Source: Forrester Research, Inc.

Figure 3.9 The Market Evolution and Complexity

of e-Commerce / e-Business Development

Source: e-Business Management Models: A Services Perspective
and Case Studies, Revere Group, Todd Miller, Matthew L. Nelson,

Stella Ying Shen and Michael J. Shaw

 141

The amount of turn-over by regions, in percents is:
Region Percent

North America 50.9%

Asia/Pacific 24.3%

Europe 22.6%

Latin America 1.2%

Figure 3. 10 The evolution of e-commerce in US (Source: US Census Bureau

http://www.census.gov/)

Figure 3. 11 Estimated Quarterly U.S. Retail Sales: Total and E-commerce (Source:

US Census Bureau http://www.census.gov/)

 142

The functional architecture for e-commerce

Systems for Internet commerce have many masters. For analysis of

architecture we consider four primary components of Internet commerce system

(figure 3.12): customer, seller, transaction system, and payment gateway. For each

one we present some security considerations.

1) Customers (Buyer,

Clients) – The

client is a computer

system, typically a

PC, connected

directly to Internet

via an ISP (Internet

Service Provider),

or indirectly via a

corporate network.

The primary tool

for using www is a

browser (a Web

client). It is

possible also to

access www via

specialized

applications

designed for e-

commerce

(particular for

payments) called wallets. The buyer can be represented by:

- Retail customer – the buyer that use the system for business-to-consumer

commerce. This category of customers would like to retain their privacy,

releasing as little information as possible to sites on the Net. Generally due

to commercial interests this information is combined with other sources of

data to build up a very detailed picture of the costumer. A major interest of

this category of customers refers to the security. They want to be assured

that their credit card numbers and other sensitive information are

adequately protected;

- Business customers – the buyers that use Internet commerce systems in

the course of their daily jobs (i.e. an administrator reordering office

suppliers). For this customers the security required refers to keep their

competitors from finding out what they are doing and assuring the integrity

of business records in company computer systems;

2) Seller (Merchant, Vendor) – The computer system or systems containing the

merchant’s electronic catalog or products. Sellers include merchants engaged

in business-to-business or business-to-consumer commerce or publishers and

Figure 3.12 The functional architecture for e-commerce

 143

content providers engaged in information commerce. The seller’s are extremely

interested in the integrity of their marketing presence, their prices, their

customer records, and their business records;

3) Transaction system – the computer system or systems that process a particular

order and which are responsible for payment, record keeping, and other

business aspects of transaction. The part for credit card processing system is

operated by financial processors that accept transactions from merchants and

forward them to the merchant’s bank. Transaction security is a paramount for a

financial processor and includes the privacy and accuracy of records, and the

authenticity and integrity of requests;

4) Payment gateway – the computer system or systems that routes payments

instruments into existing financial networks such as for credit card

authorization and settlement.

The heart of every e-commerce application is its database containing

generally the catalog, the buying transactions and the related payments

transactions. That heart is the most attractive prize for crackers because generally it

stores all your customers' information, possibly even their payment information.

The simplest way to assure the protection is to permit access to that database only

to authorized users granted to realize specific operations. The access realized on the

basis of a username and password, generally from server-side scripts, by using

connections strings containing, among other parameters, the following argument

types: server name, user name, and password. To protect this vital information

follows that rules:

- create a general user to access the database (not from administrators group)

having insert, update, and select privileges and use these to define the

connection string required to access and manipulate the database records;

- store the connection string in a separate script that will be included as a file

when needed;

- encrypt all stored passwords.

For assuring secure electronic transactions Visa and MasterCard joined

together (in 1995) to develop the Secure Electronic Transaction (SET) protocol, a

technical standard for safeguarding payment card purchases made over open

networks. SET is designed to mimic the traditional card transaction flow and in

addition it includes the use of public key certificates to authenticate the parties to

each other. Figure 3.8 illustrates the changes in the main architecture for e-

commerce with SET and table 3.2 shows SET goals and requirements for different

category of participants.

Table 3.2 SET goals and requirements

Category Goals Requirements

CardHolder Provide confidentiality of
information

Obtain and install cardholder
software (wallet)

Authenticate merchant to
cardholder

Obtain SET client certificate

Improve perception of safety of

 144

electronic commerce

Banks Reduce merchant fraud Implement certificate
hierarchy

Build electronic commerce
volume

Implement certificate
systems for cardholders

Merchants Easy integration Implement SET merchant
software

Build electronic commerce
volume

Reduce transaction costs

By his nature the HTTP protocol do not ensure any protection for the

text information sended or received. There's nothing to stop anybody out there

from listening and recording your details. Fortunately, we have other methods

that can ensure transactions are secure and that the credit card details and other

confidential information are not compromised [HKSU]:

 Encryption: the message must be encoded before sent to the web server

and received back from the web server. The web server has a public key,

and users will have a private key that enables them to decode the

information. Only having the public key and the private key together will

allow you to encrypt the message. The web server will have a public key

and its own private key at the other end. To encrypt messages, you use a

secure communications protocol. Either Secure Sockets Layer (SSL) or

Secure HTTP (HTTPS) would provide this functionality. In Windows

environmeent you can specify encryption methods and whether to use SSL

on a connection in the Web.config file.

 Certificates: To

guarantee that the site

you are dealing with at

the other end is

reputable, it can be

certified by a Certificate

Authority. Verisign

(www.verisign.com) is

perhaps the most

common Certificate

Authority. The authority

is paid a yearly fee by

the e-commerce vendor

and in return, the

authority performs checks on the business to prove that it is legitimate.

These checks are then recorded in the form of a certificate. You can

browse particular sites' certificates during the checkout process. To make

your site trustworthy, you should go about obtaining a certificate from a

Certificate Authority.

The functional architecture with SET changes as depicted in figure 3.13.

Figure 3.13 The functional architecture for e-

commerce with SET

http://www.verisign.com/

 145

Internet vulnerabilities and security

 The modern organizations (and even individual) are more and more

dependent on information technology in commercial (or personal) or governmental

operations. Today, in order to be competitive, we must receive, process, and send

information as soon and safety as possible to all partners.

If information is recorded electronically and is available on networked

computers, it is more vulnerable than if the same information is printed on paper

and locked in a file cabinet. Intruders do not need to enter an office or home, and

may not even be in the same country. They can steal or tamper with information

without touching a piece of paper or a photocopier. They can create new electronic

files, run their own programs, and hide evidence of their unauthorized activity.

Because of the inherent openness of the Internet and the original design of

the protocols, (earlier designed without security in mind) Internet attacks in general

are quick, easy, inexpensive, and may be hard to detect or trace. An attacker does

not have to be physically present to carry out the attack. In fact, many attacks can

be launched readily from anywhere in the world - and the location of the attacker

can easily be hidden. Nor is it always necessary to "break in" to a site (gain

privileges on it) to compromise confidentiality, integrity, or availability of its

information or service.

A vulnerability is a weakness that a person can exploit to accomplish

something that is not authorized or intended as legitimate use of a network or

system. When a vulnerability is exploited to compromise the security of systems or

information on those systems, the result is a security incident. Vulnerabilities may

be caused by engineering or design errors, or faulty implementation. The technical

causes behind successful intrusion techniques are represented by the following (but

not only) major technical vulnerabilities:

- flaws in software or protocol designs;

- weaknesses in how protocols and software are implemented;

- weaknesses in system and network configurations.

The basic security concepts important to information on the Internet are

confidentiality, integrity, and availability. Table 3.3 shortly describes these

concepts.
Table 3.3 The concepts of confidentiality, integrity, and availability

Concept Description

Confidentiality When information is read or copied by someone not authorized to

do so, the result is known as loss of confidentiality. For some

types of information, confidentiality is a very important attribute.

Examples include research data, medical and insurance records,

new product specifications, and corporate investment strategies.

Integrity Information can be corrupted when it is available on an insecure

network. When information is modified in unexpected ways, the

result is known as loss of integrity. This means that unauthorized

changes are made to information, whether by human error or

 146

intentional tampering. Integrity is particularly important for

critical safety and financial data used for activities such as

electronic funds transfers, air traffic control, and financial

accounting.

Availability Information can be erased or become inaccessible, resulting in

loss of availability. This means that people who are authorized to

get information cannot get what they need. Availability is often

the most important attribute in service-oriented businesses that

depend on information (e.g., airline schedules and online

inventory systems). Availability of the network itself is important

to anyone whose business or education relies on a network

connection. When a user cannot get access to the network or

specific services provided on the network, they experience a

denial of service (DoS).

Concepts relating to the people who use that information are

authentication, authorization, and nonrepudiation. Table 3.4 shortly describes these

concepts.

Table 3.3 The concepts of authentication, authorization, and nonrepudiation

Concept Description

Authentication Authentication is proving that a user is whom he or she
claims to be. That proof may involve something the user
knows (such as a password), something the user has
(such as a "smartcard"), or something about the user that
proves the person's identity (such as a fingerprint).

Authorization Authorization is the act of determining whether a
particular user (or computer system) has the right to
carry out a certain activity, such as reading a file or
running a program.

Nonrepudiation Users must be authenticated before carrying out the
activity they are authorized to perform. Security is strong
when the means of authentication cannot later be refuted
- the user cannot later deny that he or she performed the
activity. This is known as nonrepudiation.

A network security incident is any network-related activity with negative

security implications. This usually means that the activity violates an explicit or

implicit security policy (see the section on security policy). Incidents come in all

shapes and sizes. They can come from anywhere on the Internet, although some

attacks must be launched from specific systems or networks and some require

access to special accounts. A typical attack pattern consists of gaining access to a

user's account, gaining privileged access, and using the victim's system as a launch

platform for attacks on other sites. The following table shows the category of

incidents and a brief description of each:
Category Description

Probe A probe is characterized by unusual attempts to gain

 147

access to a system or to discover information about the
system.

Scan A scan is simply a large number of probes done using an
automated tool.

Account
Compromise

An account compromise is the unauthorized use of a
computer account by someone other than the account
owner, without involving system-level or root-level
privileges (privileges a system administrator or network
manager has).

Root
Compromise

A root compromise is similar to an account compromise,
except that the account that has been compromised has
special privileges on the system.

Packet Sniffer

A packet sniffer is a program that captures data from
information packets as they travel over the network.

Denial of Service

The goal of denial-of-service attacks is not to gain
unauthorized access to machines or data, but to prevent
legitimate users of a service from using it.

Exploitation of
Trust

Computers on networks often have trust relationships with
one another and attackers can forge their identity,
appearing to be using the trusted computer, they may be
able to gain unauthorized access to other computers.

Malicious Code Malicious code is a general term for programs that, when
executed, would cause undesired results on a system.
Users of the system usually are not aware of the program
until they discover the damage. Malicious code includes:
Trojan horses, viruses, and worms. Trojan horses and
viruses are usually hidden in legitimate programs or files
that attackers have altered to do more than what is
expected. Worms are self-replicating programs that spread
with no human intervention after they are started.
Generally they used as transport vector for viruses.
Viruses are also self-replicating programs, but usually
require some action on the part of the user to spread
inadvertently to other programs or systems. These sorts of
programs can lead to serious data loss, downtime, denial
of service, and other types of security incidents.

Internet
Infrastructure
Attacks

These rare but serious attacks involve key components of
the Internet infrastructure rather than specific systems on
the Internet.

In the face of the vulnerabilities and incident trends, a robust defense

requires a flexible strategy that allows adaptation to the changing environment,

well-defined policies and procedures, the use of robust tools, and constant

vigilance.

A security policy is a documented high-level plan for organization-wide

computer and information security. It provides a framework for making specific

 148

decisions, such as which defense mechanisms to use and how to configure services,

and is the basis for developing secure programming guidelines and procedures for

users and system administrators to follow. Because a security policy is a long-term

document, the contents avoid technology-specific issues.

A security policy covers the following (among other topics appropriate to

the organization):

- high-level description of the technical environment of the site, the legal

environment (governing laws), the authority of the policy, and the

basic philosophy to be used when interpreting the policy;

- risk analysis that identifies the site's assets, the threats that exist against

those assets, and the costs of asset loss;

- guidelines for system administrators on how to manage systems;

- definition of acceptable use for users;

- guidelines for reacting to a site compromise.

Factors that contribute to the success of a security policy include

management commitment, technological support for enforcing the policy, effective

dissemination of the policy, and the security awareness of all users. Management

assigns responsibility for security, provides training for security personnel, and

allocates funds to security. Technological support for the security policy moves

some responsibility for enforcement from individuals to technology. The result is

an automatic and consistent enforcement of policies, such as those for access and

authentication. Technical options that support policy include (but are not limited

to);

- challenge/response systems for authentication;

- auditing systems for accountability and event reconstruction;

- encryption systems for the confidential storage and transmission of

data;

- network tools such as firewalls and proxy servers.

The commonly recommended practices for improving security are

represented by the following:

- all accounts must have a password and the passwords are difficult to

guess (maybe, a one-time password system is preferable to other);

- the cryptographic techniques must be used to ensure the integrity of

system software on a regular basis;

- apply secure programming techniques when writing software;

- must be vigilant in network use and configuration and all necessary

changes must be realized as vulnerabilities become known;

- apply the latest available fixes and keep systems current with upgrades

and patches as vendors deliver them;

- regularly check on-line security archives for security alerts and

technical advice;

- audit systems and networks, and regularly check logs.

 149

3 BUSINESS CATEGORIES AND MODELS IN Internet …121

3.1 Business Categories ... 121

Digital firm ... 121

Business processes ... 121

Electronic market ... 121

Electronic business (e-business) .. 122

Electronic commerce (e-commerce) .. 122

Intranet ... 123

Extranet .. 124

Private industrial network .. 124

The e-business – e-commerce relationships 125

CRM (Customer Relationship Management)..................................... 126

SCM (Supply Chain Management) .. 126

Business categories .. 127

3.2 Business Models .. 128

3.2.1 Classification of e-business models .. 131

3.2.2 Common of Internet e-business models .. 133

The Merchant ... 133

Click-and-mortar merchants .. 134

Build to order merchants .. 134

The service provider ... 134

Subscription-based access .. 134

Prepaid access .. 134

The broker .. 135

The sales representative ... 135

The advertiser ... 136

Targeted advertising ... 136

Updating advertisements .. 136

Portal sites .. 137

Attention/incentive marketing .. 137

Free access ... 137

The auction room ... 137

Open auctions ... 137

Reverse auctions... 138

The virtual mall .. 138

The virtual community ... 138

The infomediary (information intermediary) 139

3.3 The E-Commerce Development And Functional Architecture 139

The e-commerce/e-business development ... 139

 150

The evolution of e-commerce .. 140

The functional architecture for e-commerce 142

Internet vulnerabilities and security ... 145

4 DOCUMENTS AND WEB SITES – STRUCTURE,

DESCRIPTION LANGUAGES

4.1 Web pages and Web sites

The documents for World Wide Web (www) are known as Web pages and

they are stored on an Internet server and displayed by a Web browser on your

computer. Web browsers display Web pages by interpreting the special HiperText

Markup Language (HTM or HTML) tags which are used to encode Web pages

with display information. The formatting of Web pages is controlled by a

collection of markup codes called HTML tags that marks off parts of Web page to

display in certain style.

Web pages usually are linked to many different files, such as graphic and

multimedia files. Typically these files are stored locally in a folder or set of folders

on the computer’s disk drive where constructed the Web site (this folder is known

as local web site). When the site published his files and folders are stored,

typically, to the hard drive of the Web server that hosts the site. The mechanism

used to create access path between documents is called hypertext. A hypertext

document is made up of links to other documents, combined together with its

displayed content. When a user clicks on a linked file, such as a piece of text, a

graphic, or a portion of a graphic, their browser display the file that the link points

to. Links embedded with text are easily identifiable. Most browsers default to

coloring and underlining linked text, and user can set the color and underline

option as they prefer.

A Web site is defined as a collection of files that are linked to a central

Web page, made available via the Web (the pages forms a cohesive collection of

information). The Web server is a type of server dedicated to storing, transmitting

and receiving the Web pages and Web related files (such GIF and JPEG graphics,

AVI sound and images and so on).

The site’s collection of linked files and Web pages are typically tied

together into a cohesive collection of information by a home page (generally called

default.htm[l], index.htm[l] or simply home.htm[l]). The letter “l” from .html is

optional and not included for compatibilities with the “8.3” filenames format (and

for that reason included in []). The home page typically contains a topic list (as a

table of contents or index) which links it to other Web pages in its Web site. All

other pages, in a well designed Web site, must offer a button or a link to go back

home (or that is provided by the Web browser). When you publish your Web site,

you upload the local site folder (and its contents including subfolders) to a Web

server, which contains the software that “serves” your Web pages out to Web

browsers on computers that are connected to the Internet. Once your local site is

 150

published to the Web server it becomes a Web site. The main or home page of the

Web site is accessed by using Internet URLs/URIs. The Internet has two attributes

that improve the company’s success factor: Web sites can be accessed by a global

audience 24 hours a day, 365 days a year, and those sites can be made to appear

personalized for individual users. With a Web site organizations can also service

the needs of their customers on a global, 24-hour-a-day basis, and marketers can

finally realize their dream of mass-customized, one-to-one marketing when they

structure Web sites effectively.

 In order to be easy found by the target auditory the website must get best

search engine visibility. To obtain that visibility the website design must follow at

least the rules:

- easy to read;

- easy to navigate;

- easy to find;

- consistent in layout;

- consistent in design;

- compliance with standards.

In a layered approach a web document can consists of up to three layers:

1) content layer, that is always present and comprise the information the

author whishes communicate to the target audience. The content layer is

embedded within HTML or XHTML markup languages;

2) presentation layer, that defines how the content will be presented to the

user (the layer can be realized with Cascading Style Sheet language);

3) behavior layer, that involves real-time user interaction with the

document. This layer is realized generally by intermediate of scripting

languages, from which the most used and platform independent is

JavaScript.

Depending on the way a site interacts with the end user and reacts to user

actions, how pages delivered as answer to user request realized (existing or

generated), and what type of resources the site is able to manipulate the site

architectures can be grouped in the following categories of architectures:

1. Static (HTML) Architecture;

2. DHTML Architecture;

3. High Level Languages based Architecture;

4. Dynamic Pages Architecture;

5. Advanced Management Architecture;

6. Multi-tier (three tiers) Architecture.

The architectures will be presented following a layered decomposition starting

with the one introduced in § 2.1.1 The Logical Structure of Web Servers. For the

second level, denoted by HTTP server, the description can have additional

functionalities that will be introduced in the paragraphs bellow.

 151

4.2 Static (HTML) Architecture

An e-commerce site, for example, offering the products catalog (the

services for product presentation) and the recording of orders can be realized only

by using HTML. The functional structure of such site is shown in figure 4.1.

In this architecture the site must contain, with except of general use pages

(home page, contact, company presentation etc.), the following page types:

- the page for presentation of offered products/services (the catalog) as a rule

in a shape of a table containing information of general interest about the

offered product/service (such as product/service name, image, price,

identification/ reference etc.);

- the pages containing details about the product/service;

- page with order fill-in form.

In order to realize electronic transactions and placing orders the order fill-

in form can contain or can be accompanied by:

- page with user account fill-in form – page required to collect user

identification data (name, address, phone number, e-mail address etc);

- login form – required to connect and place orders

- page with payment fill-in form.

If that accompanying page types present the site cannot have only a static

architecture and requires data repository for the corresponding records.

Generally the page with order fill-in form, the login form, payment form

and user account manipulation must run in a secure environment ensured by

the protocol HTTPS (HTTP Secure).

This architecture type is satisfactory for business that sell (offers) a small

number of products/services (for example, selling automotives, real estate,

consultancy etc) and having a pronounced static behavior/character of their

evolution. With except of the functionalities related to consumer (client, buyer) the

site must also offer specialized functionalities represented by:

- a management module (the

Control Workstation in the

figure want suggests the

access point in that module)

for processing the clients

orders;

- an administrative module

(that can be accessed from

the administrative

workstation) for

additions/deletions of

product presentation pages

and maintenance of

products/services catalog.

Figure 4.1 The functional structure of a site

with static architecture

 152

This operations can be realized at the host computer or from a company’s

workstation if the administration and maintenance of the site realized by

the company itself. In that case, generally the Web service provider offers

a tool for administration in a form of a control panel. Figure 4.2 shows a

control panel of Plesk 7.5.6 for Microsoft Windows produced by the

company SWsoft, Inc.

The level N3 is responsible for the management of site’s Web pages:

upload/download of pages, site directory maintenance, backup/recovery, security

etc.

HTML Document

 The commands for displaying text use their own language called Hypertext

Markup Language, or HTML. HTML is nothing more than a coding system that

combines formatting information in textual form with the readable text of a

document.

In order to learn about HTML you must remember the following terms

related to HTML and Web pages:

- WWW - World Wide Web

- Web - World Wide Web

- SGML - Standard Generalized Markup Language – a standard for

describing markup languages

- DTD - Document Type Definition – this is the formal specification of a

markup language, written using SGML

- HTML - HyperText Markup Language – HTML is an SGML DTD

In practical terms, HTML is a collection of platform-independent styles

(indicated by markup tags) that defines the various components of a World Wide

Web document. HTML was invented by Tim Berners-Lee while at CERN, the

European Laboratory for Particle Physics in Geneva (actually at MIT - USA and

founder of World Wide Web Consortium, www.w3C.org). HTML is used to

structure content of documents. The markup languages, as HTML or XML for

example, have been hugely successful because they are both human-readable yet

easily parseable by machines.

The browser reads the formatting commands and organizes the text in

accordance with them, arranging it on the page, selecting the appropriate font and

emphasis, and intermixing graphical elements. The HTML commands are set off

by a special prefix (called tag’s) so that the browser knows they are commands and

not plain text. Writing in HTML is only a matter of knowing the right codes and

where to put them. Web Authoring tools embed the proper commands using menu-

driven interfaces so that you don't have to do the memorization. More than, today’s

HTML editors have a user friendly interface WYSIWYG, so that you can do the

http://www.w3c.org/

 153

job visually and by using all the knowledge and practice you accumulate about

word-processors (or, generally, about document editors).

WYSIWYG is an acronym for "what you see is what you get"; it means

that you design your HTML document visually, as if you were using a word

processor, instead of writing the markup tags in a plain-text file and imagining

what the resulting page will look like. It is useful to know enough HTML to code a

document before you determine the usefulness of a WYSIWYG editor, in case you

want to add HTML features that your editor doesn't support.

HTML documents are plain-text (also known as ASCII) files that can be

created using any text editor (e.g. Emacs or vi on UNIX machines; SimpleText on a

Macintosh; Notepad on a Windows machine). You can also use word-processing

software but you must save your document as "text only with line breaks" (Save as

…, Save as type: Plain Text) or, if such option is present, save as HTML or as Web

Page.

The HTML language includes a diversity of tags (markers), expressed

following the next generalized syntax:

<Tag_name> Text associated………………….. [< / Tag_name>]

where <Tag_name> is the beginning of the tag and </Tag_name> is the

ending of the tag. Tag’s are special text strings that are interpreted as formatting

Figure 4.2 An example of Control Panel for the administrative workstation (Plesk

7.5.6 for Microsoft Windows; SWsoft, Inc)

 154

commands by the browser. Some tag’s contains attributes (or parameters) that can

take a finite number of specified values and whose syntax takes the format:

 <Tag_name attribut1=” value 1” attribut2=”value 2” … >

The attributes can be specified in any order, since they uses keywords, and the

value assigned, does no matter his data type, must be enclosed in quotation marks.

The pairs attribute-value and other keywords are separated by one or more spaces

(at least one!). An HTML document contains hyperlinks, the embeded links to

other documents on the web, that allows defining pathways between documents

and surfing on the web. These hyperlinks contains several pieces of vital

information, that instruct the Web browser where to go for content, such as:

- the protocol to use (generally HTTP);

- the server to request the document from;

- the path on the server to the document;

- the document’s name (optional).

The information is assembled together in an URL.

Web documents are made up of several nested layers, each one delimited

by a specific HTML tag. The first tag in a HTML document is DOCTYPE

(document type) specified in constructions similar to the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

This tag specifies the following information:

- The document's top tag level is HTML (html);

- The document adheres to the formal public identifier (FPI) "W3C HTML

4.01 English" standards (PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN);

- The full DTD can be found at the URI

http://www.w3.org/TR/html4/loose.dtd.

The minimal structure of an HTML document is shown in figure 4.3. Any

HTML document includes a heading and a body, and any other tag’s needed to

specify the document structure, appearance and behavior:

a) <HTML>: defines

the beginning/ending

of the document;

b) <HEAD>:

beginning/ending

document heading;

c) <TITLE>:

beginning/ending

document title;

d) meta-tags: allows

embeding extra-

information within a

webpage;

e) <BODY>:

Figure 4.3 The HTML document structure

 155

beginning/ending of the document itself.

An element is a fundamental component of the structure of a text

document. Some examples of elements are heads, tables, paragraphs, and lists.

Think of it this way: you use HTML tags to mark the elements of a file for your

browser. Elements can contain plain text, other elements, or both. To denote the

various elements in an HTML document, you use tags. HTML tags consist of a left

angle bracket (<), a tag name, and a right angle bracket (>). Tags are usually paired

(e.g., <H1> and </H1>) to start and end the tag instruction. The end tag looks just

like the start tag except a slash (/) precedes the text within the brackets.

Some elements may include an attribute, which is additional information

that is included inside the start tag. For example, you can specify the alignment of

images (top, middle, or bottom) by including the appropriate attribute with the

image source HTML code.

NOTE: HTML is not case sensitive. <title> is equivalent to <TITLE> or <TiTlE>.

There are a few exceptions noted in Escape Sequences.

Not all tags are supported by all World Wide Web browsers. If a browser

does not support a tag, it will simply ignore it. Any text placed between a pair of

unknown tags will still be displayed, however.

Every HTML document should contain certain standard HTML tags. Each

document consists of head and body text. The head contains the title, and the body

contains the actual text that is made up of paragraphs, lists, and other elements.

Browsers expect specific information because they are programmed according to

HTML and SGML specifications.

4.3 DHTML Architecture

DHTML stands for Dynamic

HTML and is not a W3C standard. It was

defined by Netscape and Microsoft as a

“marketing term” describing a new

technology that the generation 4.x (and

following) of browser must support. It is a

combination of “HTML/XHTML, style

sheets and scripts that allows documents to

be animated". With DHTML a web

developer can control how to display and

position dynamically the HTML elements

in a window. This is possible by

intermediate of HTML DOM, a W3C

standard that defines a standard set of objects for HTML and a standard way to

access and manipulate these HTML objects. The HTML DOM specifies the objects

together with their associated properties (or attributes, generally the equivalent to

tag attributes such as id, name, alt, title etc), and where appropriate, methods that

can be invoked for the object (such as blur(), focus(), click() etc).

Figure 4.4 The functional structure of a

site with DHTML architecture

 156

DHTML represents the usage of a lot of languages that allows realizing

animated pages and presentations, computations, and the control and validation of

primary fields in fill-in forms, such as:

- HTML/XHTML;

- Style Pages (Cascading Style Sheets);

- Scripts (JavaScript, VBScript etc).

The animation inside of the site can be realized using different specialized

applications from which Flash is the one most frequently used. The functional

architecture of the site with DHTML is shown in figure 4.4.

The site content is similar to those previously described the difference

being given by the way in which the presentation take place to the end user

(represented by client). In this architecture the new level introduced N4 contains:

- Cascading Style Sheets;

- Scripts;

- Video animation (Flash).

These features can help to make the site easier to read, navigate, and react.

They must be used in such ways that preserve or rise the search engine visibility

(remember that search engine crawlers look for text on a web page and index and

rank the page according to that text). Below is a brief presentation of these features.

They accompanied by an extended introduction containing examples of usage in

different circumstances in separate chapters.

4.3.1 CSS - Cascading Style Sheets

CSS is a language that allows defining the way in which a document

displayed referring to the usage of parental levels of pages, of the fonts (name,

color, size) and font family, or in other words, CSS is a style language that defines

layout of HTML documents. CSS is used for formatting structured content. By

using styles we can change the definition once and the change affects every

element using that style. The styles provide an easy means to update document

formatting and maintain consistency across a site. Styles are grouped together in

style sheets and are normally stored in external files with a .css extension. The

external style sheet allows define and change just once and apply that to more

pages. The addition of CSS style in a document can be realized:

a) in the current line (inline style, the style defined directly in the line

specifying the tag);

b) global, by specifying the document style at his beginning (in the heading

part);

c) by linking the style page (defined in a separate document and stored in a

separate file, too) to the document by using tags with the general syntax:

<LINK REL=”stylesheet” TYPE=”text/css”
HREF=”styldocumentname.css”>

 d) browser default.

 157

Example:

<link rel="stylesheet" type="text/css" href="styles/sitestyl.css">

where the sitestyl.css file contains:
The CSS syntax is very simple and is made up of three elements selector

{property: value; property: value …} where the selector is normally the HTML

element/tag you whish define the style (such as BODY, A:link, DIV.intro etc), and

the property is the attribute you whish change for the selector (such as

BACKGROUND, COLOR, FONT-FAMILY for BODY selector, for example),

BODY { BACKGROUND: white; COLOR: black; FONT-FAMILY: sans-serif }

A:link { BACKGROUND: none transparent scroll repeat 0% 0%; COLOR: #00e }
A:active { BACKGROUND: none transparent scroll repeat 0% 0%; COLOR:
#00e }
A:visited { BACKGROUND: none transparent scroll repeat 0% 0%; COLOR:
#529 }
A:hover{background:transparent none repeat scroll 0% 0%;color:#999999}
DIV.intro { MARGIN-LEFT: 5%; MARGIN-RIGHT: 5%; FONT-STYLE: italic }
PRE { FONT-FAMILY: monospace }
A:link IMG { BORDER-TOP-STYLE: none; BORDER-RIGHT-STYLE: none;
BORDER-LEFT-STYLE: none; BORDER-BOTTOM-STYLE: none }
A:visited IMG { BORDER-TOP-STYLE: none; BORDER-RIGHT-STYLE: none;
BORDER-LEFT-STYLE: none; BORDER-BOTTOM-STYLE: none }
A IMG { COLOR: white }
@media All { A IMG { } }
UL.toc { LIST-STYLE-TYPE: none }
DIV.issue { PADDING-RIGHT: 0.5em; PADDING-LEFT: 0.5em; PADDING-
BOTTOM: 0.5em; BORDER-TOP-STYLE: none; MARGIN-RIGHT: 5%; PADDING-
TOP: 0.5em; BORDER-RIGHT-STYLE: none; BORDER-LEFT-STYLE: none;
BORDER-BOTTOM-STYLE: none }
.hideme { DISPLAY: none }
.avbkgtop{border:medium none;background-position:center;BACKGROUND-
IMAGE:url('http://www.avrams.ro/imgs/tt077.jpg');FONT-FAMILY:'Times
New Roman';BACKGROUND-COLOR:transparent}
#menub{padding:0;margin:0;height:1em;list-style-type:none;border-left:1px
solid #c0c0c0;color: #bbbbbb;font-family:Verdana;font-weight: normal;font-
size: xx-small}
#menub li{float:left;width:8em;height:1em;line-height:1em;border-right:1px
solid #c0c0c0;position:relative;text-align:center;color:#efbb22;font-family:
Verdana;font-weight:normal;font-size:xx-small}
#menub li a, #menub li a:visited{display:block;text-
decoration:none;color:#efbb22}
#menub li a span, #menub li a:visited span{display:none}
#menub li a:hover{border:0px none;color:#c0c0c0}
#menub li a:hover span{display:block;width:8em;height:1em;text-
align:center;position:absolute;left:-1px;top:-
4px;color:#efbb22;cursor:pointer;font-family:Verdana;font-
weight:normal;font-size:x-small}
@media Print { TABLE { page-break-inside: avoid } }
ul, li { margin-left:0px}
.marybkg
{ border: medium none;
 BACKGROUND-IMAGE: url('http://www.avrams.ro/brad-0167.jpg');

 FONT-FAMILY: 'Times New Roman';
 BACKGROUND-COLOR: transparent;
 BACKGROUND-REPEAT: repeat; }

 158

and the value specifies the value you whish assign to the property (such as white

for BACKGROUND, black for COLOR in the BODY selector).

CSS supports the following metrics for property values [W3C; SS05]:

- CSS keywords and other properties, such as thin, thick, transparent, ridge,

and so forth

- Real-world measures:

 Inches (in)

 Centimeters (cm)

 Millimeters (mm)

 Points (pt) (1/72 of an inch)

 Picas (pc) (1 pica=12 points)

- Screen measures in pixels (px)

- Relational to font size (font size (em) or x-height size (ex))

- Percentages (%)

- Color codes (#rrggbb or rgb(r,g,b))

- Angles:

 Degrees (deg)

 Grads (grad)

 Radians (rad)

- Time values (seconds (s) and milliseconds (ms)) — Used with aural style

sheets

- Frequencies (hertz (Hz) and kilohertz (kHz)) — Used with aural style

sheets

- Textual strings

CSS gives many benefits to site designers such as:

- realizing control layout of many documents (web pages) from one single

style sheet;

- a more precise control of layout;

- the possibility to define and apply different layout for different media type

(display, print etc) to the same document;

- the availability of numerous advanced and sophisticated techniques.

There are three levels of CSS the main differences between them are as

follows:

- CSS1 defines basic style functionality, with limited font and limited

positioning support;

- CSS2 adds aural properties, paged media, and better font and positioning

support;

- CSS3 adds presentation-style properties, allowing you to effectively build

presentations from Web documents (similar to Microsoft PowerPoint

presentations).

All styles defined for a document “cascade in a virtual” style following this

rules (from a high to low priority):

1. Inline style;

2. Global style sheet;

 159

3. External style sheet;

4. Browser default.

4.3.2 Scripts

The scripts are source programs expressed in a scripting language and can

act at client side or at server side. Not all scripting languages allows writting scripts

for both sides. In the paragraphs below we talk about client side scripting and

scripting languages alowing defining those scripts.

The client side scripts are small source programs, expressed in a scripting

language, embeded in the HTML page and that the browser, when loading and

displaying the page, interprets and executes them. A scripting language is a

lightweight programming language designed to add interactivity to HTML pages.

A scripting language gives to HTML designers a programming tool with a easy to

use simple syntax.

The scripts inside the web page can change dinamically the page (for

example, can change the font size) when some events appears (for example,

clicking the mouse), can verify if data in a fill-in form are correct or not, etc. To

include a script in a HTML page place his content between the tags <script> and

</script> or between the additional tags <noscript> and </noscript> for the

browsers that do not understand scripts. The scripting languages situated at an

intermediary level between HTML and high level programming languages such as

JAVA, C++ and Visual Basic. If HTML used generally for formatting the text and

link creation and the programming languages for complex instruction the script

languages used for specifying of complex instructions whose syntax is more

flexible than those of programming languages. Meanwhile, the script languages can

format the text, and in that way they realize the interaction between the web page

and the user.

4.3.2.1 DOM - Document Object Model

The scripts allow restructuring an entire HTML/XHTML document for

which we can add, remove, change, or reorder items on a page. In order to change

anything on a page, the script needs access to all elements in the HTML/XHTML

document. This access, along with methods and properties to add, move, change, or

remove HTML/XHTML elements, is given through the Document Object Model

(DOM). The Document Object Model view HTML/XHTML documents as a

collection of objects (having attributes/properties and methods) and provides

access to every element in a document. Every element is modeled in a web browser

as a DOM node, and the nodes make up the DOM tree describing the relationships

between elements in a child-parent fashion. The children of the same node (having

the same parent) referred to as siblings. A node can have multiple children but only

one parent. Because of that access, any element may be modified by a snippet of

JavaScript. Elements are easily accessed by use of an id attribute (that must be

 160

unique within a given document) and a method of the document object. The

document object is the parent of all the other objects in an HTML/XHTML

document, for example document.title represents the <title> element of the

HTML/XHTML document as in the figure 4.5.

In 1998, W3C published the Level 1 DOM specification. This specification

allowed access to and manipulation of every single element in an HTML

page. All browsers have implemented this recommendation, and therefore,

incompatibility problems in the DOM have almost disappeared. The DOM

can be used by JavaScript to read and change HTML, XHTML, and XML

documents. The DOM is separated into different parts (Core, XML, and

HTML) and different levels (DOM Level 1/2/3):

 Core DOM - defines a standard set of objects for any structured

document;

 XML DOM - defines a standard set of objects for XML

documents;

 HTML DOM - defines a standard set of objects for HTML

documents.

Every object can have his own Collections, Attributes (Properties) and

Methods. The table 4.1 gives the objects in DHTML DOM.

Table 4.1 The objects in DHTML DOM

Object Description

window The top level object in the DHTML DOM. It

contains information about the window and the
frames. The objects listed below are the children

Figure 4.5 The tree structure of HTML documents (partly; theoretical)

 161

of the window object.

document Represents the HTML document, and is used to

access the HTML elements inside the document

frames Represents the frameset

history Keeps track of the sites visited by the browser
object.

navigator Contains information about the user's browser

location Contains the URL of the rendered document

event Contains information about events that occurs

screen Contains information about the computer screen
for the computer on which the browser is

Table 4.2 shows the properties (attributes) of a Document object as

implemented in Microsoft Script Editor (Windows).

Table 4.2 The properties of a HTML Document object

Property Description
aLink Sets the color of hyperlinks as they are

clicked.

Background image Provides the path to a background image for

the page.

bgcolor Sets a background color for the page.

bgProperties Sets whether the background for the page

will be scrolling (default) or fixed

(watermark)

bottomMargin Sets the height of the blank margin at the

bottom of the page.

charset Selects the character set for the page.

defaultClientScript Sets the default client scripting language.

dir Sets the reading order of page objects.

keywords Adds keywords to the META KEYWORDS tag

in the <HEAD> of your document

leftMargin Sets the width of the blank margin on the

left side of the page.

link Sets the default color of hyperlinks before

they are clicked.

pageLayout Selects whether page components added in

design view will be positioned in-line as they

occur on the page or positioned at specified

locations (enables the positioning grid).

rightMargin Sets the width of the blank margin on the

right side of the page.

showGrid Determines whether the positioning grid will

appear in Design View.

targetSchema Sets the minimum version of HTML required

 162

to view this page, and (in some cases) the

preferred document object model (DOM) for

client scripts on the page.

text Sets the default color for foreground text on

the page.

title Provides the text string inserted between the

<TITLE> and </TITLE> tags in the page

HEAD.

topMargin Sets the height of the blank margin at the

top of the page.

vLink Sets the default color of hyperlinks that have

been clicked.
Table 4.3 shows the methods of a Document object.

Table 4.3 The methods of Document object

Method Description
close() Closes an output stream opened

with the document.open()

method, and displays the

collected data

getElementById(“id”) Returns a reference to the first

object (node) with the specified

“id”

getElementsByName(“name”) Returns a collection of objects

with the specified “name”

getElementsByTagName(“tag

name”)

Returns a collection of objects

with the specified “tagname”

open() Opens a stream to collect the

output from any

document.write() or

document.writeln() methods

write() Writes HTML expressions or

JavaScript code to a document

writeln() Identical to the write() method,

with the addition of writing a

new line character after each

expression

4.3.2.2 JavaScript

JavaScript is a platform independent scripting language that gives HTML

designers a programming tool and that can be used for easy management of user

interface: it can put dynamic text into a HTML page, it can make the page react to

events or it can create and easy manipulate cookies. A JavaScript consists of lines

of executable computer code usually embedded directly into HTML pages.

JavaScript is an interpreted language and can be used without purchasing a license.

JavaScript is a client-based language, a scripting language with definite limitations,

 163

and code visible in the document it appears. Can be used for tasks such as: forms

verification, document animation and automation, and basic document intelligence

(changes in the document based on other dynamic criteria by exploiting the DOM

model).

A JavaScript inserted in the HTML document allows a local recognition

and processing (that means at client level) of the events generated by the user such

as those generated when the user scans the document or for management of fill-in

forms (for example, we must recuperate the information referencing the client such

as name, address, payment etc). By inserting a JavaScript in the HTML page we

can validate the data filled by the client (for example we can validate the Credit

Card Account, we can check for solvability, we can see transactions history, etc)

before it is submitted to the server.

A JavaScript can:

- put dynamic text into a HTML;

- react to events;

- read and write HTML elements;

- be used to validate data;

- be used to detect the visitor's browser;

- be used to create cookies.

JavaScript allows restructuring an entire HTML document for which we

can add, remove, change, or reorder items on a page. In order to change anything

on a page, JavaScript needs access to all elements in the HTML document through

the Document Object Model (DOM).

JavaScript is hardware and software platform independent. Within a

JavaScript inserted in the HTML page we can validate the data supplied by the

client (for example, to validate the card account, financial availability, history

regarding previous transactions etc.).

For an inserted JavaScript the <script type="text/javascript"> and </script>

tags tells where the JavaScript starts and ends:
<html>
<body>
<script type="text/javascript">
<!--
... // put here the script body
//-->
</script>
</body>
</html>

<html>

<head>

A JavaScript example - what the browser

displays

 164

<meta http-equiv="Content-Type" content="text/html;

charset=windows-1252">

<title>New Page 2</title>

<script type="text/javascript" language="javascript">

 <!--

 function calc(a, b){ return (a*b);}

 -->

</script>

<script id=clientEventHandlersVBS language=vbscript>

<!--

Sub Validate_onclick

 document.write("You

Type:"+cstr(text1.value)+":"+cstr(text2.value))

End Sub

-->

</script>

</head>

<body>

 <script type="text/javascript" language="javascript">

 var welcmess="Welcome to scripts:";

 document.write(welcmess)

 </script>

 <p></p> First Number: <INPUT

type="text" ID=Text1 value="0" name="text1" size="20">

 <p></p> Second Number: <INPUT type="text" ID=Text2 value="0"

name="text2" size="20">

 <p></p> <p><INPUT type="button" value="Show"

id="Validate"></p>

</body>

</html>

We can validate the data supplied by the client by inserting of a Java script

in the HTML page (for example, to validate the card account, financial availability,

history regarding previous transactions etc.).

In the example that follows is defined a function that compute when easter

will be for a wanted year. The algorithm is the same as the one introduced in the

figure 4.6. The example is also an illustration of the usage of parenthesis to change

the order of evaluation of the terms of expressions. The button labeled "JavaScript
Solution", in the HTML code that follows, calls the function every time the user

clicks the button onclick="easter_datejs(wantedYear.value)”. The algorithm

check if the supplied year is a positive year or not, case in which an error signaled

to the user. If the year is a positive one it computes the values for D and E, as

defined in Gauss algorithm in figure 4.6, reconstitute the easter date computed for

the year filled by user, and returns the easter date in the form.

 165

. . .

<script type="text/javascript" language="javascript">

 <!--

 function easter_datejs(Wanted_Year){

 var D;

 var E;

 if (Wanted_Year<0){

 alert("The value for Year must be a positive number!");

 return -1;

 }

 D = ((Wanted_Year % 19) * 19 + 15) % 30;

 E = (((Wanted_Year % 4) * 2 + (Wanted_Year % 7) * 4) + 6 * D +

6) % 7;

 D=D+E+4;

 if(D>30){

 easterDate.value='5/'+(D-30.)+'/'+Wanted_Year;

 }

 else

 {

 easterDate.value='4/'+(D)+'/'+Wanted_Year;

 }

 }

 -->

</script>

.
.
.
<div style="border:1px solid #c0c0c0">

Wanted Year:<INPUT type="text" id="wantedYear" name="wantedYear"

size="4" align="right" value="2008" >

Easter Date:<INPUT type="text" id="easterDate" name="easterDate"

size="11" align="right" readonly="readonly">

<INPUT type="button" value="VBScript Solution" ID="vbcompdat"

onclick="vbvalidComp()">

<INPUT type="button" value="JavaScript Solution" ID="jscompdat"

onclick="easter_datejs(wantedYear.value)">

</div>
. . .

 166

For more details about JavaScript see the chapter “Introduction to JavaScript –

theory and examples” in http://www.avrams.ro site.

4.3.2.3 VBScript

VBScript defined by Microsoft as a scripting language deduced from

Visual Basic (more exactly a subset of Visual Basic for Application). A VBScript

works (runs) with the browser Internet Explorer of Microsoft (in that way is

software platform dependent). Figure 4.6 shows an example of an execution of a

VBScript placed in the body of the HTML page together with the corresponding

VB code, as shown in the implementation bellow.

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=windows-1252">

<title>Determine Easter Date</title>

<script language=”vbscript”>

<!--

function Easter_Date(Wanted_Year)

 Dim D, E

 D = ((Wanted_Year Mod 19) * 19 + 15) Mod 30

 E = (((Wanted_Year Mod 4) * 2 + (Wanted_Year Mod 7) * 4)

+ 6 * D + 6) Mod 7

 Easter_Date = DateAdd("d", (D +

E+0.),CDate("04/04/"+Trim(Wanted_Year)))

Figure 4.6 The algorithm to determine Easter date

http://www.avrams.ro/

 167

end function

function validComp()

 if not isnumeric(trim(wantedYear.value)) then

 msgbox "Err.1. Wrong value for year: is not a

number!",,"Easter Date"

 wantedYear.focus

 exit function

 end if

 if len(trim(wantedYear.value))<3 or

len(trim(wantedYear.value))>4 then

 msgbox "Err.2. Wrong value for year: is a to little/large

number (min 3 and max 4 digits allowed)!"+Chr(10)+chr(13)+"[This

limitation is given by the way in which Microsoft implements the

functions]"+Chr(10)+chr(13)+"[DateAdd(...) and CDate(...)].

Eliminate this test and enjoy computing!",,"Easter Date"

 wantedYear.focus

 exit function

 end if

 easterDate.value=Easter_Date(trim(wantedYear.value))

end function

-->

</script>

</head>

<body>

 Pope pleases the great mathematician Gauss to tell him when

Easter will be in a wanted year.

 Gauss says that Eastern will be always on: 4 April+D days+E days

where:

D is determined by following the steps

1 – the year is divided by 19;

2 – the remainder is multiplied by 19;

3 – to the result of step two add fix factor 15;

4 – the sum of values obtained in the steps 1 to 3 is divided to 30 and

the remainder is D

E is determined by following the steps:

1 – the year is divided by 4 and the remainder will be multiplied by 2

2 – the year is divided by 4 and the remainder will be multiplied by

4

3 – compute the sum of values obtained to step 1 and 2

4 – to the sum add 6*D and to product add 6

5 – the total sum is divided by 7 and the remainder will be E

Note: This Formulas Compute The Easter Date For Orthodox (even

Pope is Catholic!)

A code that implements this algorithm is implemented in the VBScript

 168

in that page.

<div style="border:2px">

Wanted Year:<INPUT type="text" id="wantedYear"

name="wantedYear" size="4" align="right" >

 Easter Date:<INPUT type="text" id="easterDate"

name="easterDate" size="11" align="right" readonly="true">

<INPUT type="button" value="Compute Date" ID="compdat"

onclick="validComp()">

</div>

</body>

</html>
If the user types a year value in the “Wanted Year” box then by pressing

the “Compute Date” button (the onclick event) is called the function validComp()

that realize some validity checks for the year. If the value for year you supply

conforms to the validity checks requirements the function Easter_Date() is invoked

having as argument the year for which you whish know when Easter will be. The

return of the function is stored in the text box “Easter Date” and in that way the

answer is delivered to the user.

Being a subset of VBA VBScript allows the usage of most familiar

functions of these one. For more details about VBScript see the chapter

“Introduction to VBScript – theory and examples” in http://www.avrams.ro site.

4.3.3 Flash

Macromedia Flash is a powerful tool for realizing and deploying a wide

range of media content. The animation in the web pages can be done, in the

simplest way, by intermediate of vectorial representation. Flash is an application

that allows vectorial definition of graphics. The vectorial description uses

mathematical expressions for describing the dimension (size), form (shape),

positioning, and any other characteristics. In that way the loading of a figure

becomes a simple transfer of formulas (defined and transferred in text format) from

which the image can be reconstituted. To have an idea about the size of an image

described with Flash you must think that is 10 times smaller than his representation

GIF format. Like the applets, the Flash files (with the default extension “.swf”),

can be displayed on Web pages by referencing them from HTML files. According

to Macromedia Company, that produces Macromedia Flash, 95% of installed

browsers can interpret Flash. The application Macromedia Flash allows creating

Flash modules by dialogs. After creation the module can be exported in an external

file (for example, film.swf) that can be referenced (as object) from the HTML page

in that way:

<object width="400" height="300">
<param name="movie" value="film.swf">

<!-- additional tag for Netscape -->
 <embed src="film.swf" width="400" height="300">

http://www.avrams.ro/

 169

 </embed>
</object>

In this sample the tag <object> is recognized by Internet Explorer but non-

recognized by Netscape. For Netscape we can add the tag <embed>. Macromedia

Flash allows generating the HTML pages provided with the tags required to

include the Flash modules in the page and the alternatives links to the Flash

interpretor on Macromedia site (if browser that display the page do not know

Flash). There is an example (from ASE portal, home page, once upon) of such

usage:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://
download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,29,0"
width="191" height="35">
<param name="movie" value="Banner/preadmitere.swf" />
<param name="quality" value="high" />
<embed src="Banner/preadmitere.swf" quality="high"
pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-
shockwave-flash" width="191" height="35">
</embed>
</object>

Macromedia definition of Flash is: “Flash is an authoring tool that

designers and developers use to create presentations, applications, and other

content that enables user interaction.”

The individual pieces of content created with Flash, in a process denoted

by the notion “authoring document”, are called applications and are stored in files

having a .fla extension. When you have finished authoring and publish the file a

compressed version (with a very small size: a JPEG graphic can be represented in a

Flash document 11 times less in size of the file) of file with the extension .swf

(SWF) will be uploaded. This file can be played by Flash Player in a browser or as

a standalone application.

A Flash application is build generally by mixing graphics created with the

Flash drawing tools (visually) together with imported additional media and

defining how and when you to use each of those elements.

A Flash document has four main parts:

1) Stage - specifying where graphics, videos, buttons, and so on appears

during playback;

2) Timeline - is the part where we specify when we want the graphics and

other elements of the project to appear;

3) Library panel - is where Flash displays a list of the media elements in the

Flash document;

4) ActionScript code - that allows adding interactivity to the media

elements in the document.

 170

Figure 4.7 shows

the structure of a .fla file

[RRSD] and how Flash

documents are composed of

individual scenes that

contain keyframes to

describe changes on the

Stage. The figure shows

also the efficiency of

sharing Flash Libraries

among several Flash

documents by loading other

Flash movies into a parent,

or "master," Flash movie

using the loadMovie()

action, or creating

interactive elements with

scripting methods.

The figure 4.8

outlines the characteristics

of a published Flash file

(.swf file) such as:

- portability, meaning that

is compatible with most

operating systems and

browsers applications;

- extensibility, that allows

adding new features in

subsequent versions;

- scalability, allowing

movies be played at multiple resolution with preventing loose in quality.

The heart of the Flash application is a vector-based drawing program that

draws shapes by defining points that are described by coordinates. Lines that

connect these points are called paths, and vectors at each point describe the

curvature of the path. Because this scheme is mathematical, there are two distinct

advantages the vector content is significantly more compact, and it's thoroughly

scalable without image degradation, advantages that are especially significant for

Web use.

The vector animation component of the Flash application relies on the slim

and trim vector format for transmission of the final work. Instead of storing

Figure 4.7 Elements of a Flash document (.fla) in the

authoring environment (Source: Macromedia Flash 8

Bible by Robert Reinhardt and Snow Dowd, John Wiley

& Sons © 2006, [RRSD])

 171

megabytes of pixel information for each frame, Flash stores compact vector

descriptions of each frame.

Flash quickly renders the vector descriptions as needed and with far less

strain on either the bandwidth or the recipient's machine and this is, indeed, a huge

advantage when transmitting animations and other graphic content over the Web.

4.3.4 Ajax

Asynchronous JavaScript and XML – uses the JavaScript-based

XMLHttpRequest object to fire requests to web server asynchronously (or without

having to refresh the page). Figure 4.9 shows the usage of traditional server

request/response model, the most used technology in Internet, in which the web

server responds with a new content for the page at the user request, together with

the use of Ajax asynchronous methodology in which the server responds with

changes within the web page as answer to the user requests.

Figure 4. 8 Overview of the Flash movie (.swf) format (Source: Macromedia Flash 8

Bible by Robert Reinhardt and Snow Dowd, John Wiley & Sons © 2006)

 172

Ajax is not a really technology at all. It is a term to describe the process of

using JavaScript-based XMLHttpRequest object to retrieve information from web

server in a dynamic manner (asynchronously). The only requirement to use Ajax is

to enable JavaScript within the used browser to surf on Internet. Even whether is

based on JavaScript and seem be difficult the structure of an Ajax-based server

request is quite easy to understand and invoke: you must simply create an object of

the XMLHttpRequest type, validate that it has been created successfully, point

where it will go and where the result will be displayed, and then send it.

Figure 4.10 shows an Ajax page as displayed in Mozilla Firefox browser.

By pressing on one of the outlined hyperlinks will start the event “onclick” that

calls a function named makerequest(url) having as argument an URL address.

The function loads the resource at the indicated address and replaces the

part indicated from the page with the text response from the server where that

resource resides. Figure 4.11 shows the source code of that page including the Ajax

code.

Figure 4. 9 Traditional Server Request/Response Model vs. Ajax Methodology

Figure 4. 10 An Ajax page example

 173

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"
/>
<title>Ajax - Change Page Content</title>
<script type="text/javascript">
<!--
var xmlhttp;
function state_Change()
{
if (xmlhttp.readyState==4)
 {// 4 = "loaded"
 if (xmlhttp.status==200)
 {// 200 = "OK"
 document.getElementById('repme').innerHTML=xmlhttp.responseText;
 }
 else
 {
 alert("Problem retrieving data:" + xmlhttp.statusText);
 }
 }
}
function makerequest(url){
xmlhttp=null;
if (window.XMLHttpRequest){// code for Firefox, Opera, IE7, etc.
 xmlhttp=new XMLHttpRequest();
 } else if (window.ActiveXObject){// code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
if (xmlhttp!=null) {
 xmlhttp.onreadystatechange=state_Change;
 xmlhttp.open("GET",url,true);
 xmlhttp.send(null);
 }else {
 alert("Attention! Your browser does not support Ajax. To view properly that
page Enable usage of JavaScript / ActiveX");
}}
//-->
</script>
</head>
<body onload="makerequest('pgs/ajax-1.html')">

 <div align="center">
 <h1>Internet Technologies for Business - Chapter 3</h1>
<!-- This links defines a menu like on which you click and new content replaces
the division
identified by ‘repme’ -->

 174

 Page
1
 | Page
2
 | Page
3
 <p></p>
 <div id="repme" name="repme" style="width: 99.9%">This content will be
replaced by the requested page</div>
 </div>
</body>
</html>

Figure 4. 11 The source code corresponding to the page in figure 4.10

4.4 High Level Languages based

Architecture

In this architecture a new level N5

introduced (figure 4.12) where the

communication client-server take place, in

a real client-server relationship, and

producing a significant reduction of data

traffic (comparing with CGI). The most

used high level languages represented by

Java and XML.

4.4.1 Java

Java is a full programming language (in the same way C or C++ are) that

offers the same services like other programming languages. His main advantage is

represented by portability (the independence relatively to the used processor and

operating system). The portability is

ensured to both source and binary

(executable) code. For the programs

written in other programming

languages even the source has

portability the binary code generated

by the compiler is specific to a

processor type (figure 4.13).

The Java programs source

composed by primary data of the

same dimension does no matter the

used development platform. The binary files are portable because they executed

without requiring recompiling and this quality given by the pseudo-code (called

Figure 4.12 High level languages based

architecture

Figure 4.13 Programs “classic” compiled

 175

byte codes) used to describe the procedures (figure 4.14). The pseudo-code is

represented by a multitude of instructions closed to the machine language but

without being dedicated to a specific processor type.

The bytes codes interpreter is

incorporated (embedded) in the

compatible navigation

programs/applications (browsers).

Java language is an object oriented

programming language and the

creation of programs is modular and

the modules reusable. Java has class

libraries that supply the basic data

types, realizes the system input/output

operations, and other utility functions.

Java programs, called applet, are executed (run) to the client machine (computer)

and the server is involved only in the phase of initial loading of the applet (when it

downloads to the client the requested page containing the applet). This behavior is

very important in intranet applications.

By his conception and behavior (the language itself and the compiler) Java

ensure an increased security. Java has a syntax of instructions and sentences as the

C language with except of that Java do not uses pointers (the source of many

problems) and registry data types but keeps the references to objects (realized by

intermediate of pointers with an increased control).

The pseudo-code sequences are tested before execution to see if they do

not violate the access constraints. A Java applet cannot read or write the local

drives, cannot execute programs on the local computer and cannot connect to other

web machines with except of the server from where taken. The compiler and

interpreter verify the source code and the pseudo-code. A Java applet can be

executed in multiple tiers but the management of the time allowed to each tier is

his responsibility (and not of the host operating system as is happening for normal

executables; the operating system allows the execution time to the applet and this,

in turn, ensure the sharing of this by the execution tiers that it spawn).

Unlike an application, applets cannot be executed directly from the

operating system and a well-designed applet can be invoked from many different

applications. Web browsers, which are often equipped with Java virtual machines,

can interpret applets from Web servers. Because applets are small in files size,

cross-platform compatible, and highly secure (can't be used to access users' hard

drives), they are ideal for small Internet applications accessible from a browser.

Generally is not necessary for end users to know Java to install applets in

their pages. There are thousands of free applets available on the Internet for almost

any purpose and most of them can be customized without programming. An applet

can be embedded into a webpage and usually has several settings that allow

personalize it. For instance, if you insert an applet that will work as a menu, you

Figure 4.14 Compiled Java programs

http://www.webopedia.com/TERM/A/applet.html
http://www.webopedia.com/TERM/A/applet.html
http://www.webopedia.com/TERM/A/applet.html
http://www.webopedia.com/TERM/A/applet.html

 176

can specify which options should be in the menu, and which pages should be

loaded upon click on an option. Since Java is a real programming language there

aren't many limitations to it. Any program running on your computer could

possibly have been made as an applet. When an applet is put on a page the applet

and the HTML page the applet is embedded in must be saved on the server. When

the page is loaded by a visitor the applet will be loaded and inserted on the page

that embedded it. Applets have the file extension "class". Some applets consist of

more than just one class file, and often other files need to be present for the applet

to run (such as JPG or GIF images used by the applet). When we use existing

applets we must check the documentation for the applet to see if we have all files

for it to run, and before embedding an applet on a page, we need to upload the

required files to the server.

Example:
<Html>
<Head>
<Title>A Java Example</Title>
</Head>

<Body>
This is a page with applet

Below you see an applet

<Applet Code="anapplet.class" width=200 Height=100>

</Applet>
</Body>
</Html>

The following attributes can be set for the <Applet> tag:

Attribute Explanation Example
Code Name of class file Code="anapplet.class

"

Width=n n=Width of applet Width=200

Height=n n=Height of applet Height=100

Codebase Library where the applet is

stored. If the applet is in

same directory as your page

this can be omitted.

Codebase="applets/"

Alt="Text" Text that will be shown in

browsers where the ability to

show applets has been turned

off.

alt="Menu Applet"

Name=Name Assigning a name to an applet

can be used when applets

should communicate with

each other.

Name="starter"

Align=

Left

Justifies the applet according

to the text and images

Align=Right

 177

Right

Top

Texttop

Middle

Absmiddle

Baseline

Bottom

Absbottom

surrounding it.

Vspace=n Space over and under the

applet.

Vspace=20

Hspace=n Space to the left and right of

applet.

Hspace=40

4.4.2 XML – eXtensible Markup Language

 Extensible Markup Language (XML) is a simple, very flexible text format

derived from SGML (ISO 8879). Originally designed to meet the challenges of

large-scale electronic publishing, XML is also playing an increasingly important

role in the exchange of a wide variety of data on the Web and elsewhere.

XML is not a language; it is actually a set of syntax rules for creating

semantically rich markup languages in a particular domain. In other words, you

apply XML to create new languages [DOS_03].

XML was developed by the XML Working Group (initially called SGML

Editorial Review Board) from W3C (World Wide Web Consortium) in 1996. The

initial specification of the language establishes the following objectives for this:

- XML must be directly usable in Internet;

- XML must support a variety of applications;

- XML must be compatible with SGML;

- The XML pages creation must be as simple as possible and rapidly done;

- XML may not contains facultative functions;

- The XML must have a high readable degree;

- The syntax must be formal and concise;

- The code concision is an element of little importance.

XML (Extensible Markup Language) has become far more than just a way

of delimiting comma or tab separated files. XML has become an entire ecosystem

of declarative languages and tools to process them. XML Schema are commonly

used to efficiently validate form and structure. XML is now the most common way

to express domain specific languages (DSLs). The new standard for HTML,

XHTML, is a DSL expressed in XML. XML is a meta-language that allows

defining specialized languages, extensible, that will be used for describing data

structures specific to an applicative domain. XML is a markup language without

having predefined tags (as HTML have): the author (user) defines (creates) all the

markup tags it believe will be used, eventually qualified by attributes, and define

the document structure (how the tags interacts with one another). For example, lets

consider a Student record (table) having the fields outlined in figure 4.15).

 178

Field Name Data Type

StudID Double

First_Name String, 30 characters

Last_Name String, 30 characters

Birth_Date Short Date

Gender String, 8 characters

Notes String, 60 characters

Figure 4.15 Fields in Student record

The XML schema description of the Student is shown in figure 4.16.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:od="urn:schemas-microsoft-com:officedata">
<xsd:element name="dataroot">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element ref="Student"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="Student">

<xsd:annotation>
<xsd:appinfo/>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="StudID" minOccurs="0" od:jetType="double"
od:sqlSType="float" type="xsd:double"/>
<xsd:element name="First_Name" minOccurs="0" od:jetType="text"
od:sqlSType="nvarchar">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Last_Name" minOccurs="0" od:jetType="text"
od:sqlSType="nvarchar">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Birth_Date" minOccurs="0" od:jetType="datetime"
od:sqlSType="datetime" type="xsd:timeInstant"/>
<xsd:element name="Gender" minOccurs="0" od:jetType="text"
od:sqlSType="nvarchar">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="8"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Notes" minOccurs="0" od:jetType="text"

 179

od:sqlSType="nvarchar">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="60"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 4.16 The XML schema description of Student record

The associated XML document (containing data) to the Student schema

description is illustrated in figure 4.17.
<?xml version="1.0" encoding="UTF-8"?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"
xmlns:xsi="http://www.w3.org/ 2000/10/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Student.xsd">
<Student>
<StudID>1001</StudID>
<First_Name>Ion</First_Name>
<Last_Name>IONESCU</Last_Name>
<Birth_Date>1986-09-26T00:00:00</Birth_Date>
<Gender>Male</Gender>
</Student>
<Student>
<StudID>1003</StudID>
<First_Name>Ana</First_Name>
<Last_Name>POPESCU</Last_Name>
<Birth_Date>1987-03-21T00:00:00</Birth_Date>
<Gender>Female</Gender>
</Student>
</dataroot>

Figure 4.17 The XML document containing data

Each application must give a semantic to markers by associating of a

behavior to each element type. XML simplifies the language syntax and easiest

considerably the implementation of different application. It offers the possibility

for producing, changing, and processing of “well formed” (syntactically correct)

documents without requiring from their part to include compulsory an explicit and

strong declaration of their structure.

XML offers an elegant and efficient mechanism for defining namespaces

allowing, in that way, applications to recognize (distinguish) them in a data

multitude, to identify the structures that must be processed as such, ignored or

processed in another manner. The namespace allows realizing the distinction

between the elements created by different authors. Because authors can create

custom elements, it leads to the possibility of naming collisions - different elements

that each have the same name. An XML namespace is a collection of element and

attribute names and has a unique name. The namespace can be used as namespace

prefixes within a markup tag to indicate the associated namespace (for example

 180

<student:first_name> or <person:first_name >, where student and person are

namespace prefixes). The keyword xmlns is used to declare a default namespace for

an XML document. The default namespace is declared within the root element.

XML, by simplifying the data exchange between heterogeneous

applications and by unifying the data processing with the HTML documents,

generated major changes in IT sectors such as electronic data exchange (EDI),

“company’s memory” and datamining.

4.4.2.1 Differences between XML, HTML, and SGML

XML - SGML Comparison. SGML was build for the purpose of storing

documents in large centralized libraries while XML is designated to be used in a

distributed environment and for storing documents while ensuring the

interoperability by intermediate of data exchange. XML allows defining his

elements and sub-elements. A document has a strong tree structure integrally

accessible starting from his top element (root). This data structure type is more

general and powerful than the relational data structure. A tree describes the

composition of each element (his substructures); an element can be a hyperlink

pointing any kind of informatic element located anywhere, or an element of a XML

document (located in the same document or in another one).

XML - HTML Comparison. HTML defines only the page formatting of a

document while XML defines the structure, content and semantic independent of

the page formatting. The XML documents have a type definition given by DTD

(Document Type Definition) while the HTML documents have not. The HTML

grammar is fixed, standard defined and the keywords and structures are enclosed

between tags. XML allows defining any structure that can be modeled as tree and

the description is done by using the tags defined and wanted by user. In that way

can be build standard data structures at profession level, for example, similarly to

the definition of standard formats for EDI. The HTML documents have a

sequential static structure with a heading and a body while the HML documents are

hierarchies. Is another difference regarding the way the hyperlinks used in the

advantage of XML.

4.4.2.2 XSL: the formatting language of XML

For displaying, printing, and voice synthesizing control XML provides two

categories of style sheets:

- CSS, cascading style sheets used beginning with HTML 4 and applicable to

XML too;

- XSL, style sheets based on an extensible language for style sheets - eXtensible

Stylesheets Language, language representing developments SGML in

accordance to ISO 10179. The XSL processor completes the technology of

XML navigators (figure 4.1,85) and the XSL processing take place in two

phases:

 181

o in the first step is

generated a new

XML tree, based on

the source document,

expressed in XML

or HTML;

o in the second phase

the generated tree

allows the fusion of

XML data together

with the static

fragments of the document and a table of contents (that allows easy

navigation) or a graphic element is generated.

The passing from a form to another one is realized simply by passing from

a XSL page to another. The XSL processor can be used at server side in different

ways.

Example:

 The xsl page for Student (partly) is:
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl" language="vbscript">
<xsl:template match="/">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=UTF-8" />
<TITLE>Student</TITLE>
<STYLE TYPE="text/css">
.Style0 { BORDER-STYLE: solid; COLOR: #000000; BACKGROUND-COLOR: #ffffff;
BORDER-WIDTH: 1px; BORDER-COLOR: #333399; TEXT-ALIGN: general;
WRITING-MODE: lr-tb; VISIBILITY: visible; FONT-WEIGHT: 400; FONT-SIZE: 9pt;
FONT-FAMILY: Tahoma; FONT-STYLE: normal; TEXT-DECORATION: none;
PADDING-TOP: 0in; PADDING-BOTTOM: 0in; PADDING-RIGHT: 0in; PADDING-
LEFT: 0in }
.Style1 { BORDER-STYLE: none; COLOR: #333399; BACKGROUND-COLOR:
transparent; BORDER-WIDTH: 1px; BORDER-COLOR: #000000; TEXT-ALIGN:
general; WRITING-MODE: lr-tb; VISIBILITY: visible; FONT-WEIGHT: 700; FONT-
SIZE: 9pt; FONT-FAMILY: Tahoma; FONT-STYLE: normal; TEXT-DECORATION:
none; PADDING-TOP: 0in; PADDING-BOTTOM: 0in; PADDING-RIGHT: 0in;
PADDING-LEFT: 0in }
</STYLE>
</HEAD>
<BODY link="#0000ff" vlink="#800080" style="BACKGROUND-
IMAGE:url('Images\Student.bmp'); BACKGROUND-POSITION: center center;
BACKGROUND-REPEAT: repeat">
<xsl:for-each select="/dataroot/Student">
<xsl:eval>AppendNodeIndex(me)</xsl:eval>

</xsl:for-each>
<xsl:for-each select="/dataroot/Student">
<xsl:eval>CacheCurrentNode(me)</xsl:eval>
<xsl:if expr="OnFirstNode">
<DIV style="BORDER-STYLE: none; WIDTH: 4.5416in; BACKGROUND-COLOR:
#ece9d8; VISIBILITY: visible; HEIGHT: 0in; POSITION: relative">

Figure 4.18 The steps of an XSL processing

 182

</DIV>
</xsl:if>
<DIV style="BORDER-STYLE: none; WIDTH: 4.5416in; BACKGROUND-COLOR:
#ece9d8; VISIBILITY: visible; HEIGHT: 1.6041in; POSITION: relative">
<SPAN class="Style0" style="TEXT-ALIGN: right; LEFT: 1.3333in; TOP: 0.0833in;
WIDTH: 1.6041in; HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
<xsl:eval no-entities="true">Format(GetValue("StudID", 5),"" ,"")</xsl:eval>

<SPAN class="Style1" style="LEFT: 0.0416in; TOP: 0.0833in; WIDTH: 1.2916in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
StudID

<SPAN class="Style0" style="LEFT: 1.3333in; TOP: 0.3333in; WIDTH: 1.6041in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
<xsl:eval no-entities="true">Format(GetValue("First_Name", 202),""
,"")</xsl:eval>

<SPAN class="Style1" style="LEFT: 0.0416in; TOP: 0.3333in; WIDTH: 1.2916in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
First Name

<SPAN class="Style0" style="LEFT: 1.3333in; TOP: 0.5833in; WIDTH: 1.6041in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
<xsl:eval no-entities="true">Format(GetValue("Last_Name", 202),""
,"")</xsl:eval>

<SPAN class="Style1" style="LEFT: 0.0416in; TOP: 0.5833in; WIDTH: 1.2916in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
Last Name

<SPAN class="Style0" style="TEXT-ALIGN: right; LEFT: 1.3333in; TOP: 0.8333in;
WIDTH: 0.7187in; HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
<xsl:eval no-entities="true">Format(GetValue("Birth_Date", 7), "Short Date",
"")</xsl:eval>

<SPAN class="Style1" style="LEFT: 0.0416in; TOP: 0.8333in; WIDTH: 1.2916in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
Birth Date

<SPAN class="Style0" style="LEFT: 1.3333in; TOP: 1.0833in; WIDTH: 0.6458in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
<xsl:eval no-entities="true">Format(GetValue("Gender", 202),"" ,"")</xsl:eval>

<SPAN class="Style1" style="LEFT: 0.0416in; TOP: 1.0833in; WIDTH: 1.2916in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
Gender

<SPAN class="Style0" style="LEFT: 1.3333in; TOP: 1.3333in; WIDTH: 3.1666in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
<xsl:eval no-entities="true">Format(GetValue("Notes", 202),"" ,"")</xsl:eval>

<SPAN class="Style1" style="LEFT: 0.0416in; TOP: 1.3333in; WIDTH: 1.2916in;
HEIGHT: 0.1875in; OVERFLOW: hidden; POSITION: absolute">
Notes

</DIV>
<xsl:if expr="OnLastNode">
<DIV style="BORDER-STYLE: none; WIDTH: 4.5416in; BACKGROUND-COLOR:

 183

#ece9d8; VISIBILITY: visible; HEIGHT: 0in; POSITION: relative">
</DIV>
</xsl:if>
<xsl:eval>NextNode()</xsl:eval>
</xsl:for-each>
</BODY>
</HTML>
<xsl:script>
<![CDATA[
 …………

4.4.2.3 XQL – the extended query language

XQL (eXtended Query Language) allows searching in the XML tree and is

realized as an extension of XLS for pattern matching that allows the description of

searching criteria (for example, book/author means searching of elements author

contained by the elements book). XQL allows hyperlinks to all nodes that satisfy

some criteria and the string defining the search can be embedded in URL. XQL is

declarative as SQL is the difference is that his result is a tree or an XML graph

4.4.2.4 Database Links

Structured Data Exchange. The first XML specifications in 1998 almost aim the

definition of a specialized language for describing structured data with the scope of

realizing the data exchange between applications in an open system network

environment. In that sense XML was defined as a language for serializing the

imported/exported records in/from relational databases. The usage of XML in that

scope argued by:

- standardization of syntactical analyzers (efficient and free);

- the representation of relational schemas without data loss in XML is

trivial;

- the language coupled with the style sheets (XSL) well matches to data

fusion for heterogeneous schemas and sources and schema transformation.

This working manner allows (for example, in an e-commerce application starting

with a HTTP request) bringing out from the database the information regarding a

product (availability, price etc), coding in XML and fusion with the static part

(product imagine, description etc) for generating “by fly” a personalized

commercial offer.

Storage of XML documents in databases. XML is adapted to the storage of any

kind of documents such as illustrated technical manuals, e-mail, programs, reports

etc. The XML stored data are independent on the hardware, software, and used

access methods, on the programming languages and the page layouts and

formatting, being in fact a universal standard for storage.

Document Object Model (DOM). The XML/HTML navigator implements an

application interface API that offers a programmable access to displayed data. The

standard W3C defines an object-oriented API allowing an application program to

access the tree formed by an XML object. This API can be implemented in any

 184

object oriented programming language (generally in Java). The XML document

can contains other forms (such as, for example, a menu form) and the code defining

the changes to be done dynamically in the document as reaction to user actions and

filled values (not necessarily typed). The document becomes in that way interactive

and can be changed (modified), in content and presentation, without server

interaction.

The figure 4.19 shows an example of using the document object and his

sub-objects and properties of that in code (you can copy and paste in the HTML

view in a new page in FrontPage or MS Script Editor or Netscape Composer etc

and preview in browser to see the result). The script inside changes the document

background when the user clicks somewhere on his surface.
<HTML>
<HEAD>
<TITLE>Color Switch</TITLE>
<META NAME="GENERATOR" Content="Microsoft Visual Studio">
<META HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8">
<script type="text/javascript">
function ChangeColor()
{
 /* to the variable curBGColor assigned the current background color
 that originally is set to red (#ff1001)
 */
 curBgColor = document.body.style.background;
 /* the switch sequence */
 if (curBgColor == "#ff1001" || curBgColor == "")
 { document.body.style.background="yellow";}
 else
 { document.body.style.background="#ff1001";
 }
}
</script>

</HEAD>
<BODY onclick="ChangeColor()" bgcolor="#ff1001">
 <p>Click anywhere on this document to switch the background color from red to
yellow!
 </p>
</BODY>
</HTML>
Figure 4.19 An example of using document object in a JavaScript inside of a

HTML page

Figure 4.20 illustrates the usage of VBScript together with the DOM model

to realize many operations:

- the function validateValues(), is called by the procedure Coresp_Temp() to

validate the form fields values passed in by the user by checking if they are

numbers. If not numbers an error message returned to the caller and

displayed in a message box and the processing stops. The fields, such as

minTemp.value or maxTemp for example, are objects whose property

called value stores the text box content;
- if all typed values are numbers the Coresp_Temp() procedure produces the

HTML tags for a table containing the correspondence value between

Celsius an Fahrenheit degrees. First the heading of table stored in the

 185

memory variable called repx and after that a cycle of transformation started

from minTemp.value to maxTemp.value that transforms values at each hop

given by stepTemp.value . Each pair Fahrenheit value and corresponding

Celsius value will generate a new row in the table "<tr><td

width=120px>" & Right(Space(24) & round(fahrenheit,2),12) &
"</td><td width=120px>" & Right(Space(24) & round(celsius,2),16) &
"</td></tr>"

- after the conversion cycle ends the generated table closed by his end tag

and the function displays the table (stored in the memory variable repx) by

replacing the division called “replaceMe” in the web page
document.getElementById("replaceMe").innerHTML=repx.

- the button called ClearPage clears the forms fields by assigning the empty

string to the value property of each field. The content generated in the page

is erased too by the command
document.getElementById("replaceMe").innerHTML="".

<html>

<head>

<title>VBScript solution</title>

<script type="text/vbscript" language="vbscript">

<!--

 function validateValues(min,max,pas)

 dim ret

 ret="Yes"

 if isnumeric(trim(minTemp.value)) then

 min=trim(minTemp.value)

 else

 if ret="Yes" then ret=" "

 ret=ret & "<<From>>"

 end if

 if isnumeric(trim(maxTemp.value)) then

 max=trim(maxTemp.value)

 else

 if ret="Yes" then ret=" "

 ret=ret & "<<To>>"

 end if

 if isnumeric(trim(stepTemp.value)) then

 pas=trim(stepTemp.value)

 else

 if ret="Yes" then ret=" "

 ret=ret & "<<Step>>"

 end if

 validateValues=ret

 end function

 Sub Coresp_Temp()

 Dim min,max,pas,fahrenheit, celsius,conr, repx

 ' Computation of the correspondence Co- Fo

 186

 if (validateValues(min,max,pas))<>"Yes" Then

 msgbox "Err. 01. The value you typed in " &

validateValues(min,max,pas) & " box is not a number ? Correct

them and press again."

 exit sub

 end if

 fahrenheit=0 : celsius=0

 repx="<table border=1 style='text-align:right'><tr><td

width=120px>Fahrenheit </td><td width=120px> Celsius

</td></tr>"

 For fahrenheit = min To max Step pas

 celsius = (5/9)*(fahrenheit-32)

 repx=repx & "<tr><td width=120px>" & Right(Space(24) &

round(fahrenheit,2),12) & _

 "</td><td width=120px>" & Right(Space(24) &

round(celsius,2),16) & "</td></tr>"

 Next

 repx=repx & "</table>"

 document.getElementById("replaceMe").innerHTML=repx

 End Sub

 function ClearFields()

 minTemp.value=""

 maxTemp.value=""

 stepTemp.value=""

 document.getElementById("replaceMe").innerHTML=""

 end function

-->

</script>

</head>

<body>

<h1>VBScript based solution. </h1>

Type the values you want to compute the correspondence and then

press the Show button

<div style="border:1px solid #c0c0c0">

From:<INPUT type="text" id="minTemp" name="minTemp"

size="4" align="right" value="0" >

 To:<INPUT type="text" id="maxTemp"

name="maxTemp" size="5" align="right" value="300">

 Step:<INPUT type="text" id="stepTemp"

name="stepTemp" size="5" align="right" value="20">

<INPUT type="button" value="Show" ID="vbcompdat"

onclick="Coresp_Temp()">

<INPUT type="button" value="ClearPage" ID="vbclr"

onclick="ClearFields()">

</div>

 187

<p></p>

 <div id="replaceMe"></div>

</body>

</html>
Figure 4.21 An example of using document object model in a VBScript

inside of a HTML page

Figure 4.21 shows how document object and his component objects are

accessed and manipulated in Microsoft Script Editor.

Access to DHTML documents. For an object oriented programming language the

document is an object composed by other objects. When API accessed by the XML

interpreter it exists a gateway object that allows access another object, the

document, whose elements are objects too. In that conditions any conversion of a

XML document can be done under the control of a Java or Visual Basic program

(for example).

4.5 Dynamic Pages Architecture

The e-commerce applications must interfaced with the enterprise’s

databases for data retrieval purposes. The programs for ensuring the link between

the web server and databases are written in different languages such as Python,

Perl, PHP, ASP, C++, etc.

Figure 4. 20 The access to DOM objects in Microsoft Script Editor

 188

The generic name that defines such links is CGI – Common Gateway

Interface – described in the chapter 1.2.6 (figure 4.22, 4.23, and 4.24). These

applications allows, depending on their objectives and characteristics, generating

dynamical pages. Figure 4.22 shows the content of a PHP script stored at server

side that access a database table to check if a username/password combination

exists or not and to allow or deny the access. Figure 4.23 shows what is delivered

to the user by the server when this one access the page.
<?php
session_start();
// Check if he wants to login:

if (!empty($_POST[username]))
{ require_once("connect.php");
 $query = mysql_query("SELECT * FROM members
 WHERE username = '$_POST[username]'
 AND password = '$_POST[password]'")
 or die ("Error - Couldn't login user $_POST[username].");
 $row = mysql_fetch_array($query)
 or die ("Error - Couldn't login user $_POST[username].");
 if (!empty($row[username])) {
 $_SESSION[username] = $row[username];
 echo "Welcome $_POST[username]! You've been successfully logged
in.";
 exit(); }
 else // bad info.
 {
 echo "Error - Couldn't login user $_POST[username].

 Please try again.";
 exit();
}}
?>
<html>
 <head>
 <title>Login</title>
 </head>
 <body>
 <form action="login.php" method="post">
 <table border="1" cellpadding="3" cellspacing="1" style="width: 37%">
 <tr>
 <td style="width: 93%; text-align:center; height: 1.2em;"><h2 style="font-
size: small; height: 10px; margin-bottom:1px">Login</h2></td>
 </tr>
 <tr>
 <td style="width: 93%; font-size: small; height: 1em;"><label>Username:
<input type="text" name="username" size="29" value="<? echo $_POST[username];
?>"></label></td>
 </tr>
 <tr>
 <td style="width: 93%; font-size: small; height: 1em;"><label>Password:
<input type="password" name="password" size="25" value=""></label></td>
 </tr>
 <tr>
 <td style="width: 93%"><input type="submit" value="Login"></td>
 </tr>
 </table>
 </form>

 </body>

 189

</html>

Figure 4. 22 The page content at server side containing access to database tables

<html>
 <head>
 <title>Login</title>
 </head>
 <body>
 <form action="login.php" method="post">
 <table border="1" cellpadding="3" cellspacing="1" style="width: 37%">
 <tr>
 <td style="width: 93%; text-align:center; height: 1.2em;"><h2 style="font-
size: small; height: 10px; margin-bottom:1px">Login</h2></td> </tr>
 <tr>
 <td style="width: 93%; font-size: small; height: 1em;"><label>Username:
<input type="text" name="username" size="29" value=""></label></td> </tr>
 <tr>
 <td style="width: 93%; font-size: small; height: 1em;"><label>Password:
<input type="password" name="password" size="25" value=""></label></td>
</tr>
 <tr>
 <td style="width: 93%"><input type="submit" value="Login"></td>
 </tr>
 </table>
 </form>
 </body>
</html>

Figure 4. 23 The page content at client side as generated and downloaded to the

user

The dynamic page is not

stored to the server as the

static one is. She is

generated (manufactured)

according to the client

request and the information

content is prepared to the

web server (an image of

that) and send to client that

can read them on his

computer and used browser

(figure 4.24). In figure 4.24

is represented a functional

architecture of the site

containing dynamical pages and figure 4.25 the synthetic representation of the

process of generating pages.

The communication process involved by the new level N6 introduced by

that architecture take place as indicated in the chapters 2.2.6, paragraph

Figure 4.24 Functional architecture for dynamic pages

 190

Client/Server Technology, and chapter 3.1 paragraphs Intranet, Extranet, and The

e-business – e-commerce relationships.

SSI (Server-Side Include). The server can generate dynamic (“by fly”) the HTML

file, that it sends to client for displaying, in accordance with the data

send/requested by client with SSI. SSI is a language that can create dynamically the

page content send to

client. Not all Web

servers offer support for

SSI. How SSI works? For

example, for including a

header (stored in a file

named header.txt) in

every page that will be

displayed by the browser

we must write in the

HTML file, to the beginning of the body:

<pre>
<!--#include file="header.txt" -->
</pre>

When a client request that page the server processes first the command and send to

client the HTML file containing the content of the file “header.txt” substituted to

the command (the header.txt content is substituted to the comment). The SSI

commands are invisible to the client this one receiving (his browser) only the result

of the processing of that commands.

ASP - Microsoft Active Server Pages. ASP is a Web environment for

developing server scripts and used for dynamic execution of Web server interactive

applications. As idea ASP is similar to SSI, but is more complex. ASP is

characteristic to Microsoft Web servers and is nothing than a way to process the

scripts at server side. The difference is that the client side scripts are send to client

(usually embedded in the HTML documents) and this one processes locally the

Figure 4.25 The generation of a dynamic page

Figure 4.26 The generating of a dynamic page

1. HTTP request

Browser

 Web Server

Active

Server

Page

2. HTTP response

 191

script while the ASP is processed by the server and the result is included and send

in the HTML file to client (figure 4.26).

PHP. Is a language similarly to C and used in the same way as ASP. Is a

development of Apache and is completely free. For PHP it exist interpreters on a

variety of Web servers (including Microsoft) and can run under a variety of

operating systems. As a rule the files containing PHP have the extension “.php”.

The PHP code is enclosed in special start (<?php) and end (?>) tags that allow you

to jump into and out of "PHP mode" (figure 4.22).

Example:

</html>
<?php
 echo "Text afisat de script PHP.
";
?>
</body>
</html>

PHP [OLS07], which stands for "PHP: Hypertext Preprocessor" is a

widely-used Open Source general-purpose scripting language that is

especially suited for Web development and can be embedded into HTML.

Its syntax draws upon C, Java, and Perl, and is easy to learn. The main goal

of the language is to allow web developers to write dynamically generated

web pages quickly, but you can do much more with PHP.

There are three main areas where PHP scripts are used:

- Server-side scripting, this is the most traditional and main target field for

PHP and can do anything any other CGI program can do (such as collect

form data, generate dynamic page content, send and receive cookies etc).

This type of usage requires three things to make this work: a PHP parser

(CGI or server module), a web server and a web browser.

- Command line scripting, the PHP script can be run without any server or

browser but PHP parser;

- Writing desktop applications, even PHP is not the very best language to

create a desktop application with a spectacular graphical user interface can

be used in combination with PHP-GTK to write cross-platform client

application programs.

PHP can be used on all major operating systems (including Linux, many

Unix variants, Microsoft Windows, Mac OS X, RISC OS etc) has support for most

of the web servers today (including Apache, Microsoft Internet Information Server,

Personal Web Server, Netscape and iPlanet servers, Oreilly Website Pro server,

Caudium, Xitami, OmniHTTPd, and many others).

PHP scripts can be realized using procedural programming or object

oriented programming, or a mixture of them. PHP has the ability to output different

kinds of documents such as HTML, XHTML, XML, images, PDF files and even

 192

Flash movies (using libswf and Ming) generated on the fly. PHP can auto-generate

these files, and save them in the file system, instead of printing it out, forming a

server-side cache for your dynamic content.

A strongest and significant feature of PHP is its support for writing a

database-enabled web page for a wide range of databases: Adabas D, InterBase,

Postgre, SQL, dBase, FrontBase, SQLite, Empress, mSQL, Solid, FilePro (read-

only), Direct MS-SQL, Sybase, Hyperwave, MySQL, Velocis, IBM DB2, ODBC,

Unix dbm, Informix, Oracle (OCI7 and OCI8), Ingres, Ovrimos.

4.6 Advanced Management Architecture

For better usage of information produced by the site or to offer

complementary services to their clients (figure 4.27) we must provide the site with

specific utilities (applications or programs) that answers to that requirements, such

as, tools for site activity analysis or those for obtaining statistic information.

4.6.1 Statistic utilities

All statistic information are collected and analyzed in a form of database

schemas. Analytics is software that generates metrics for example about how many

times files are accessed, how many unique IP addresses access the site, how many

pages are served, and so on. Analytics can calculate the most popular pages, how

long the typical person stays on the typical page, the percentage of people who

"bounce" or leave the site from a particular page, and thus the percentage of people

who explore the site more deeply.

In the following paragraphs two examples of analytics packages

introduced: AWStats as an open source site side solution and Google Analytics as

Figure 4.27 The Advanced Management Functional

Architecture

 193

AWStats. AWStats (Advanced Web Statistics) is an open source log analyzer

written in Perl that can use a variety of log formats and runs on a variety of

operating systems. AWStats is primarily a site statistics program, residing at host

server side, a log analyzer, that counts more than it calculates. Figure 4.28 shows

the first screen of the Web pages report given by AWStats where the left panel is a

menu and list of topics reported.

Google Analytics. “Google Analytics (figure 4.29) helps you find out what

keywords attract your most desirable prospects, what advertising copy pulled the

most responses, and what landing pages and content make the most money for you

(http://www.google.com/analytics/feature_benefits.html). “

Google Analytics uses a snippet of JavaScript code to track the traffic on

your web site as the following one:

<script src="http://www.google-analytics.com/urchin.js"

type="text/javascript">

</script>

Figure 4. 28 AWStats reports (main screen)

http://www.google.com/analytics/feature_benefits.html

 194

<script type="text/javascript">

 <!--

 _uacct = "UA-1653633-1"; // domain unique code given by Google

when registered

 urchinTracker(); // call the tracker for the specified domain

 //-->

</script>

The code introduced in the body section of every page you want monitorize. The

left panel in the figure 4.29 is a navigational menu to a variety of reports included

in one of the fourth broad categories: Visitors, Trafic Sources, Content, and Goals.

4.6.2 Cookie

Cookie offers complementary means for identifying the visitors/users and

distinguished of other solutions in three strong points:

- a cookie is stored always on the user’s computer;

- a cookie is accessible uniquely to the server that generating it;

- a cookie is editable only in the moment the user visits the site that

generated this.

Being build as a character string a cookie represents a powerful tool for

developing web sites. The creation of a cookie can be done in two ways (figure

4.30):

Figure 4. 29 The Google Analytics reports

 195

1. by transmitting from server to navigator the order for creation (instruction

set_cokie);

2. by executing the instructions for creating cookies on the client computer by

intermediate of one of programming languages whose instructions embeds in

HTML pages.

In both cases the starting of the command for generating cookie is the corollary

of the client request of/access to a HTML page. Figure 4.31 shows the evolution

way of a cookie.

A cookie can be used for different purposes such as:

1) Restricting access to some web pages (for services that requires subscription,

for example). In that case the access requires as a rule the pair

username/password given to the user when registering in the site. The script for

this case can transmit a cookie to client containing his name or an access code

to the page. For this purpose (restricted access) the webmaster must write every

page having restricted access as a CGI script and later on must verify

Figure 4.30 The implementation of a cookie

Figure 4.31 The evolution of a cookie

 196

dynamically the existence of cookie (for limit the duplicates of this and

repeating the authentication by username/password);

2) Building purposefulness forms. Some sites presents to every visit the same

form that requires the same information from the client that can embarrassing

this and can produce redundant information. Solving of that problem can be

done by a CGI script that searches the presence of a generic cookie created

after the user fills the minimal set of acceptable data in the registering form. If

the cookie present the registration page will not be created and the access is

given to the next page. If the cookie is missing then the registering form will be

generated.

3) Web pages personalization. This is one of most judicious usage of cookies.

Many sites (generally informational) allow users to configure/customize the

home page. By intermediate of the associated (assigned) cookie it recuperates

the personalization at any login.

4) Piloting a virtual kadi (cart). The absence of the management of a memory

(primary or secondary) by the HTML protocol makes this inadequate for e-

commerce. By the appearance of cookies becomes possible the creation of a

virtual Kadi that follows the client in his virtual travel. The cookie memorizes

the integrality of buying session that allows displaying on each new page the

selected articles (name,

quantity, price etc).

The concurrent

solutions developed in

JavaScript do not

eliminates cookie

because by

intermediate of this

one the nominative

information shared

with the server do not

requires retyping to the

next login.

4.6.3 Network traffic analysis

The quality of services offered by a selling site can be measured by

intermediate of traffic analysis tools (figure 4.32).

4.7 Multi-tier (three tiers) Architecture

In the integration process of company’s e-commerce site with his current

activities appears the necessity, in mean or long term, to realize the link with the

existing management informatic systems (to integrate the site with these ones).

Figure 4.32 Network traffic analysis tools

 197

The manufacturing

process, enterprise

management, and the ERP

(Enterprise Resource

Planning) utilities are

permanently linked to the

selling architecture (if not

embedded in this one). In

the case in which the

organization disposes of

heterogeneous application

to automate his activities

these must be interfaced

with the selling site. The

first function that must be

accomplished by the

application server is to

ensure that interfacing and

integration (figure 4.33).

4.7.1 Client-Server Infrastructure

The client-server infrastructure allows generally the support for interfacing

and integrating (the description of client-server technology introduced in chapter

1.1).

The client-server technology can be categorized in the following architectures:

- Client-server 1
st
 generation: this architecture consists of a client that

uniquely manages the presentation layer and a server running the entirely

application;

- Client-server 2
nd

 generation: this architecture developed on Windows

platform and PC. The basic idea was that of using the processing

capabilities of PC (at client side) and the server manages the database

access by the SQL queries of the client.

- Client-server 3
rd

 generation: this generation was born due to Internet

technology. It consists of a client managing the presentation layer, a server

layer for application whose task represented by applications, and a third

layer containing the database.

The client-server architecture has three simple layers:

- Client workstation;

- Communication intermediaries;

- Access to standardized services.

The client workstations, provided with browsers from which the client

components, such as Java applets and ActiveX controls, are automatically updated.

Figure 4.33 Three-tier Architecture

 198

This solves the software distribution problem and the software versions

management to the client workstation. More than the application logic migrates to

server side authorizing, in that way, an efficient control of his deployment.

4.7.2 Application Server

The main function of the application server is to deserve the information

system applications. The enterprise’s information system concentrates in three

poles (figure 4.34) – human resources organization, information and technology –

that allows a centralization

of enterprise’s intelligence

so that we can qualify this

assembly be the enterprise

“know how”.

In order to develop

this architecture the

enterprises must choose

between the “as it is possible” in-house development and buying an offer “ready to

use” from third parties, generally, less flexible. Now is possible to realize a mixed

approach: the development on the basis of existing components of J2EE (Java 2

Enterprise Edition) in association with EJB (Enterprise Java Beans) components, as

an emergency solution.

The enterprise’s intelligence and the information system can be divided in three

layers:

- information capital, that is a prime material of the enterprise;

- processes, that models the enterprise activity;

- applications, that constitutes the functional part, the graphic interface, and

processing processes.

The information base is shared between all enterprise processing processes,

and each processing process is sharable between many applications. In that way, by

preserving this architecture until the implementation, we can obtain a maximal rate

of usage of the information system components.

The logical structures of the architecture of information system can be represented

by using a layered approach as in figure 4.35. In that logical structure:

- the application layer decomposed in two (sub)layers presentation and

coordination;

- the layer information database composed by the domain layer and

persistency layer;

In that way the logical architecture composed by five layers:

1. Presentation: manages the visual domain;

2. Coordination: his tasks are to invoke the processes of the inferior layer, to

manage the user workspace and working session;

Figure 4.34 Organization of Information System

ORGANIZATION INFORMATION

TECHNOLOGY

 199

3. Services: his main purpose is to supply services specific to the domain

activities. The main tasks of this layer represented by the component

distribution (deployment), transaction control, and security;

4. Domain: is concerned on the

enterprise activities common to

all applications and his main task

is to guarantee the domain model

by applying the processing rules;

5. Persistency: the last layer in the

architecture but the most

important by that all persistency

of the system is reported to it. At

this layer we found basic

functionalities that allow creation,

updating, searching, retrieval, and

deletion of components of the

entity processing processes.

Figure 4.35 The logical layers of the

information system

 200

 201

4 DOCUMENTS AND WEB SITES – STRUCTURE,

DESCRIPTION LANGUAGES…………………………….. 149

4.1 Web pages and Web sites ... 149

4.2 Static (HTML) Architecture ... 151

4.3 DHTML Architecture... 155

4.3.1 CSS - Cascading Style Sheets ... 156

4.3.2 Scripts .. 159

4.3.2.1 DOM - Document Object Model ... 159

4.3.2.2 JavaScript ... 162

4.3.2.3 VBScript ... 166

4.3.3 Flash .. 168

4.3.4 Ajax ... 171

4.4 High Level Languages based Architecture 174

4.4.1 Java .. 174

4.4.2 XML – eXtensible Markup Language .. 177

4.4.2.1 Differences between XML, HTML, and SGML 180

XML - SGML Comparison .. 180

XML - HTML Comparison .. 180

4.4.2.2 XSL: the formatting language of XML 180

4.4.2.3 XQL – the extended query language .. 183

4.4.2.4 Database Links ... 183

Structured Data Exchange .. 183

Storage of XML documents in databases .. 183

Document Object Model (DOM) ... 183

Access to DHTML documents ... 187

4.5 Dynamic Pages Architecture .. 187

SSI (Server-Side Include) .. 190

ASP - Microsoft Active Server Pages .. 190

PHP .. 191

4.6 Advanced Management Architecture ... 192

4.6.1 Statistic utilities ... 192

4.6.2 Cookie ... 194

4.6.3 Network traffic analysis .. 196

4.7 Multi-tier (three tiers) Architecture .. 196

4.7.1 Client-Server Infrastructure .. 197

4.7.2 Application Server .. 198

5 DEFINING AND STRUCTURING WEB PAGES

USING HTML

5.1 HTML – An introduction

HTML, acronym for HyperText Markup Language, represents the most

commonly used language for presenting information over the Internet. It is not a

programming language, because it does not allow the implementation of

algorithms. It is a description language which uses different elements to format,

arrange and place text, images and other objects on a webpage. HTML code can be

written using any simple text editor, like Notepad, in the form of HTML elements.

The HTML elements are defined using tags represented through predefined

keywords, stating the name of the HTML element, surrounded by angle brackets.

Most of the HTML elements have both a start tag, represented by the name of the

element surrounded by angle brackets (<html>, <head>,), and an end tag,

represented by the name of the element preceded by symbol /, surrounded by angle

brackets (</html>, </head>,). The start tag sets the place where the

html element begins and the end tag sets the place where the html element ends.

The content of the HTML element, between the start tag and the end tag, might be

nothing or it could contain plain text and other HTML elements, called children.

Usually, the children HTML element tags are defined within the parent HTML

element tags, meaning that child start tag follows parent start tag and child end tag

is written before parent end tag:

<parent_start_tag> [HTML] <child_start_tag> [HTML]

<child_end_tag> [HTML] </parent_end_tag>

[HTML] is optional HTML code which could contain simple text and/or

other HTML elements. When writing HTML, a special attention should be paid to

respecting this rule and exceptions must be treated very carefully.

There are also HTML elements which do not require an end tag. For

instance, when you insert a horizontal line across the page, you cannot specify both

where this line should start and where it should end because it is drawn, by default,

from the left edge to the right edge. This way, only the opening tag <hr /> is used

for inserting the horizontal line. These are called empty HTML elements and they

are closed in the start tag. The same thing applies for other HTML elements like

new line
 or image . HTML is case insensitive which means that

202

there is no difference between writing tags with capital letters, like <HTML>,

<BODY>,
 or with small letters like <html>, <body>,
. The

browsers will interpret them the same way.

Most of the HTML elements can be customized by setting values to their

attributes. In order to modify an HTML element, the name of the attribute and the

value it takes are written in the start tag, like name_of_attribute = “value”. More

attributes can be inserted in the opening tag of one HTML elements and the

changes they provide are applied in the order they are written. For instance, in

order to insert a centered red colored line with a length of 200 pixels, the three

attributes along with their values must be written inside <hr> tag, separated by at

least a simple space:

<hr align = “center” color = ”red” width = ”200” />

The values of the attributes should be written between double quotes or

single quotes. If the value itself contains a word written between double quotes

then it should be enclosed between single quotes. Though attribute names and

attribute values are case insensitive, the World Wide Web Consortium (W3C)

recommends them to be written with lowercase in their HTML 4 recommendation.

There are some attributes that can be applied to most HTML elements with

very few exceptions. These attributes are divided into core attributes,

internationalization attributes and scripting events:

- core attributes:

o id – the value it takes uniquely identifies the HTML element it

belongs to, throughout the entire webpage. The value, which is

case sensitive, should begin with a letter and might contain

letters(a-z, A-Z), digits (0-9), hyphens (“-“), underscores (“_”),

colons (“:”) and periods (“.”).

o class – specifies that the HTML element is member of one or more

classes. Unlike the case of the ID attribute, more HTML elements

may belong to the same class and one HTML element may belong

to several classes. The value of the class attribute is case-sensitive.

o style – allows the specification of style rules for the HTML

element it belongs to.

o title – provides a title to the HTML element, which can be viewed

as a tooltip when the user visiting the webpage goes with the

mouse pointer over the HTML element.

- internationalization attributes

o lang – specifies the language in which the values of the attributes

are written and helps search engines to index the document. The

203

values are usually predefined (en for English, en-US for American

English, ro for Romanian).

o dir – specifies in which direction the text is written: ltr for left to

right and rtl for right to left.

- scripting events – the attribute value is a script (function call) which is

executed whenever one of the following events occurs on the HTML

element:

o onclick – the mouse button is clicked on the element;

o ondblclick – the mouse button is double-clicked on the element;

o onmousedown – the mouse button is pressed on the element;

o onmouseup – the mouse button is released over the element;

o onmouseover – the mouse pointer is moved over the element;

o onmousemove – the mouse pointer is moving over the element;

o onmouseout – the mouse pointer is moved outside the element;

o onkeypress – a key is pressed and released when the element is

selected;

o onkeydown – a key is pressed down when the element is selected;

o onkeyup – a key is released when the element is selected.

Figure 5.1 - Source code for www.ase.ro homepage

Although the content of HTML pages is very different from one page to

another, there is a basic structure that all HTML pages should contain. You can

deduct this structure by accessing a webpage using a browser like Microsoft Internet

Explorer and viewing its HTML code by running Source command from the View

204

menu. For instance, if you open www.ase.ro with Microsoft Internet Explorer and go

to View-Source, you can view the source of the index page, Figure 5.1.

5.1.1 The Structure of a HTML Page

The first HTML element is !DOCTYPE which states what version of HTML

is used in this document and what rules it complies to. This element also

communicates to the Web server what kind of document it is delivering. The

!DOCTYPE element has only a start tag and is found always at the very beginning of

the HTML document. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> is the HTML 4.01

Transitional Document Type Definition (DTD) and declares that the code on the

page includes presentation attributes and elements that W3C expects to phase out

as support for style sheets matures.

The next element is HTML, defined by start tag <html> and end tag </html>

which closes all the tags on a page. It actually defines the boundaries of the HTML

page, specifying that its content is text with HTML markup tags. The <head> start

tag follows the <html> tag and defines the beginning of the document head which

contains information about the document. The HEAD element ends with </head>

which is immediately followed by <body> start tag, defining the beginning of the

document body. The BODY element contains all the visible information on the

webpage, along with structuring and formatting elements. Its ending tag </body>

is just before the ending tag of the HTML document </html>.

These are the main HTML elements that define the structure of an HTML

page and which can be found in almost any HTML webpage on the Web. Thus, in

order to start building a page using HTML, first we have to define its basic

structure as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">

<html>

 <head>

 </head>

 <body>

 </body>

</html>

The text above can be written in any text editor like Microsoft Notepad. In

order to be viewed using an internet browser like Microsoft Internet Explorer,

Mozilla Firefox or Opera, the file must be saved with .html or .htm extension,

http://www.ase.ro/

205

Figure 5.2. There is no difference between the two extensions except that older

operating systems do not accept extensions made up of four letters.

Figure 5.2 - Saving HTML code written in Notepad as webpage with .html extension

Opening the file with the default web browser, by simply double clicking on

it in Windows Explorer, will result in displaying an empty internet browser

window which shows the full path to this file in the title bar, Figure 5.3. Since we

have written only HTML code to define the structure of our webpage, there is

nothing displayed by the browser as the page is opened.

When building a webpage by

writing HTML code in a text editor

like Notepad, it is recommended to

keep opened both the Notepad and

the internet browser displaying the

page. After changing the HTML code

in Notepad, press Ctrl+S to save the

document, press Alt+Tab to switch

between Notepad and Internet

Browser and then press F5 to refresh

the content of the browser so that the

changes done in Notepad are updated.

Then, after viewing the refreshed content of the webpage, in order to make further

changes, switch back to Notepad, by pressing Alt+Tab.

Figure 5.3 - Empty browser window

206

5.1.2 The HTML Page Head Tag

The head element, enclosed between <head> and </head>, contains only

other HTML elements which describe documents characteristics. It cannot contain

plain text since the content of this element is not displayed on the webpage. The

elements contained in the head element cannot contain, at their turn, other HTML

elements, and there is no specific order to write them.

The title element is the only HTML element whose content is shown in the

browser displaying the webpage. The text written between <title> and </title> tags

is displayed in the title bar of the browser. This title should be both meaningful for

the webpage so that everyone understands what the page is about, and not too long

so it fits into the title bar. Adding

<title> HTML basics </title>

inside the head element, between <head> and </head> tags, and previewing the

saved file in Internet Explorer will result in displaying a page whose title bar has

changed, Figure 5.4.

Figure 5.4 - Webpage with title was set through the TITLE element

The other HTML elements that can be inserted in the head element are not

visible from the webpage but are very useful for providing information about the

content of the webpage is about to search engines crawlers, web applications or

people interested in details about the webpage.

The meta element contains general information (meta-information) about

the document and includes pairs of attributes (name, content). The name attribute

specifies what kind of information is written in the content attribute.

For instance, the author and the description of the document can be specified

in the meta element as:

207

<head>

<title> This is the title of my webpage </title>

<meta name = “Author” content = “Dragos Vespan” name

= “Description” content = “Test page”>

</head>

The head element can also contain the following HTML elements:

- base – defines a default URL or a default target for all the links in the

page. For instance, if you want to force all hyperlinks on the page to

open in a new window, you can insert the following statement inside

the head element:

<head>

[HTML]

<base target = ”_blank” />

</head>

- link – sets up a relationship between the webpage and an external file.

Usually, this HTML element is used with external style sheets and

will be discussed later in this chapter.

The body element encapsulates all the content that has to be displayed on the

webpage. It might contain a wide variety of nested HTML elements used for

structuring and formatting the text, images and other objects.

5.2 Text emphasizing elements

For anyone using document editors like Microsoft Office Word or Star

Office Writer, it is very easy to understand and use HTML elements for formatting

the text displayed in a webpage. The HTML elements used for formatting the text

practically do most of the things that usual document editors can do. The only

difference is that the text you want to format in a certain way in HTML must be

contained inside the HTML element that does the formatting, between its start and

end tags.

5.2.1 Headings

For instance, suppose you want to write a chapter title for your page. In

Word, you would use headings to write chapter and sub-chapter titles: Heading 1

for chapter title, Heading 2 for subchapter title, Heading 3 for sub-subchapter title

and so on. The same thing happens in HTML: you can use h1 element to write

chapter titles, h2 for subchapter titles and so on. There are 6 headings available in

HTML: h1 displaying default 24 point text size, h2 – 18 pints, h3 – 14 points, h4 –

208

12 points (which is the default text size in HTML), h5 – 10 points and h6 – 8

points. Beside the different size of the text, the headings are always bold and

separated from the text above and below through an empty line. Thus, there is no

difference between text written using h5 and normal bold text, only that the former

has empty lines above and beyond.

The HTML heading elements may contain in their start tag the align

attribute, which can take three possible values: left (which is the default alignment

to the left margin of the page), center and right. Usually, the titles on a page are

center-aligned.

<body>

<h1 align = “center”> This is a chapter title on the page </h1>

<h2 align = “right”> This is subchapter title aligned to the right </h2>

<h3> Heading 3 with default alignment </h3>

<h4 align = “right”> Heading 4 right-aligned </h4>

<h5 align = “center”> Heading 5 center-aligned </h5>

<h6 align = “left”> Smallest heading left-aligned </h6>

</body>

The presence of the align attribute in the start tag of an HTML element

forces the content to be aligned according to the attribute’s value. If the heading is

part of another HTML element which is center aligned and there is no align

attribute specified in heading’s start tag then the heading will be, by default, center

aligned. If there is an align attribute in the opening tag then the heading will be

aligned according to the value it has. The HTML code above displays centered

heading 1 and heading 5, right-aligned heading 2 and heading 4, left aligned

heading 6 and default aligned (left if there is no other alignment specified) heading

3, Figure 5.5.

Figure 5.5 - Headings in HTML

209

5.2.2 Spaces

When typing text in a document editor, you don’t have to worry about new

line and spaces: if you want to get to the new line simply press Enter and if you

want to add more space between two words, simply type space several times. In

HTML things are different: no matter how many spaces you put between two

words or letters, there will be only one space displayed and all the consecutive new

lines you insert with Enter will count as one space.

<body>

No matter how many s p a c e s you put

between words and letters they will be trimmed to only one

space

and

no matter

how many new lines you insert

they will be ignored

</body>

The result of the code written above is presented in Figure 5.6. As you can

see, all multiple spaces were treated as only one space and all consecutive new

lines were treated as one space. This way, in most cases it doesn’t matter if you

write the HTML code for the entire page on a single row or on several rows. Still,

writing code on a single row is not recommended because it is very difficult to read

and understand the HTML code in order to update or change it.

Figure 5.6 - HTML ignores multiple spaces and new lines

5.2.3 Paragraphs

In fact, when you press Enter in a document editor like Microsoft Office

Word, there is a new paragraph inserted. You can write paragraphs in HTML also

but you have to explicitly specify where a paragraph starts and when it ends, with

start tag <p> and end tag </p>. When the paragraph is displayed, HTML leaves

210

empty lines both above and under the paragraph. Also, if you want the text from a

sentence inside the paragraph to begin at the left margin, similarly to inserting a

new line in Word by pressing Shift+Enter, you have to use the
 tag. Break

HTML element has only a start tag
, without end tag. It is not necessary to

write tags on different lines like the <p> and </p> tags in the HTML code below,

but it is a good practice to structure the information in the HTML code according

to the way that it should be displayed, so that the code is updated easier.

<body>

<p>

In HTML things are different: no matter how many spaces you put

between two words or letters, there will be only one space

displayed and all the new lines you insert with Enter will be ignored.

</p>

<p>

In fact, when you press Enter in a document editor like Microsoft

Office Word, there is a new paragraph inserted.

 You can write paragraphs in HTML also but you have to

explicitly specify where a paragraph starts and when it ends.

</p>

<p>

When the paragraph is displayed, HTML leaves empty lines both

above and under the paragraph

</p>

</body>

Putting text in paragraphs, between <p> and </p> tags, will insert empty

lines above and below the text, Figure 5.7. Note that the second sentence of the

second paragraph starts from the left edge, due to the
 tag inserted in the text

in HTML code.

Figure 5.7 – Paragraphs and new lines in HTML

211

5.2.4 Preformatted Text

Still, if there is a need to insert text that would require many new lines, like

rhymes of a poem or lyrics of a song, then the preformatted HTML element may be

used, with <pre> start tag and </pre> end tag. This element displays the new

lines from the text contained but trims multiple spaces to only one.

<body>

<pre>

Gaudeamus igitur,

Juvenes dum sumus;

Post jucundam juventutem,

Post molestam senectutem

Nos habebit humus!

</pre>

</body>

The result for the code above is shown in Figure 5.8.

5.2.5 Character Entities

Some characters are reserved in HTML and their simple use might have

unexpected results. For instance, as mentioned before, several spaces written in

HTML are trimmed to only one space. In order to display more consecutive spaces,

you can use either the non-breaking space entity name or its entity number

 .

<body>

<p>

Figure 5.8 - Use of preformatted HTML element

212

You have to use non-breaking space to display

more consecutive

spaces.

If you want to display and tags you have to use

appropriate entity names or numbers: and .

© Copyright 2009

</p>

</body>

The code above, exemplifies the use of character entity names and spaces

and Figure 5.9 shows how the Internet Explorer browser interprets them.

Figure 5.9 - Use of character entity names and numbers

Table 5.1 presents the main character entities used in HTML:

Table 5.1 – Character entity descriptions, names and numbers
*1

Character to

display

Description Entity name Entity number

 non-breaking space

< less than < <

> greater than > >

& ampersand & &

“ quotation mark " "
€ euro € €
© copyright © ©
® registered trademark ® ®
± plus or minus ± ±

 *1 Annex 3 contains a full list of this character entity description

5.2.6 Text Formatting

Word processors allow parts of text to be emphasized by applying different

changes to the fonts used: type, size, color, and also bold, italic, underline,

subscript, and superscript. HTML provides also elements which format the text

213

they contain. The most used text emphasizing elements in HTML are presented in

Table 5.2.

Table 5.2- HTML elements for text formatting

HTML tags Action

... Bold text

<i>...</i> Italic text

<big>...</big> Big text (increases the font size from its current value

by 1)

… Emphasized text (most of the browser display the text in

italics)

... Strong text (Internet Explorer displays the text in bold)

<small>…</small> Small text (decreases the font size from its current value

by 1)

_… Subscripted text (The text appears slightly below the

baseline in a smaller font)

[…] Superscripted text (The text appears slightly above the

top of the preceding text in a smaller font)

… Deleted text (The text is strikethrough)

<ins>…</ins> Inserted text (In Internet Explorer the text is displayed

underlined)

You can use more HTML elements for the same text by simply nesting one

element into the other. There is no restriction on how many elements can be nested

but the rule that has to be strictly respected is that any start tag should have a

corresponding end tag for all non-empty HTML elements.

5.2.7 Horizontal Rule

A HTML page can be divided into sections through horizontal rules, by

using <hr /> tag. Without any attributes, this tag draws a black horizontal line

from the left margin to the right margin of the text and inserts empty lines above

and below it. The width attribute defines the length of the line: a number value sets

the length in pixels and a percent value sets the length related to the width of the

page. The size attribute sets the thickness in pixels of the rule and the color

attribute sets the color. Also rules can be aligned to center, right or left by

assigning these values to the align attribute. In Figure 5.11, the first rule is the

default one and the second rule is blue, covers 50% of the HTML page width, is

center aligned and has a thickness of 3 pixels.

<body>

<p>

214

Text can be written bold or <i> italic </i> or <i>

both of them </i> . When text is written <i> italic and then

 italic and bold and then </i> only bold , the rule of

closing HTML elements in the reverse order they were opened may

be applied.

</p>

<p>

Big HTML element <big> increases <big> the font size <big> each

time it is applied </big> </big> </big> and small HTML element

<small> decreases <small> the font each time it is <small>

applied </small> </small> </small>.

</p>

<hr />

<p>

With superscript and subscript you can write, for instance,

x_i²

</p>

<hr size = ”3” width = ”50%” color = ”blue” align = ”center”>

<p>

Insert HTML element writes <ins> underlined text </ins> and

delete HTML element writes strikethrough text like it

was deleted.

</p>

</body>

Figure 5.10 - Text formatting in HTML

215

The code above exemplifies the application of HTML text emphasizing

elements presented in Error! Reference source not found. and the way that

Internet Explorer displays it is presented in Figure 5.10 . Note that if the same

HTML element is opened more than once then it has to be closed the same number

of times it was opened. The first closing tag of an HTML element which was

opened several times will actually close the last opened instance of that HTML

element. When more HTML elements are opened then a good rule to follow is that

they are closed in the reverse order they were opened. Still, in HTML this rule does

not have to be always applied, like in the above example where the text is written

italic, then both italic and bold and then only bold.

5.2.8 Lists

Like document editors, HTML allows you to create lists in order to

enumerate different items. There are three types of lists available: unordered lists

(…), ordered lists (…) and definition lists (<dl>…</dl>). In

unordered lists the items are marked by a bullet (small black circle) and in ordered

lists items are marked by numbers. The marking symbol for both types of lists can

be changed using the type attribute with the following values: disc (●), circle (○) or

square (▫) for unordered lists and 1 (arabic numbers - 1,2,3…), A (upper alpha -

A,B,C,…), a (lower alpha - a,b,c,…), I (upper roman - I, II, III, IV,…), i (lower

roman - i,ii,iii,iv,…) for ordered lists. In both types of lists, items are inserted using

the list Item HTML element whose end tag may be omitted ().

Definition lists are lists of terms with a description for each one of the terms.

Each term is inserted using definition term HTML element (<dt>) and its

correspondent definition is inserted using definition description HTML element

(<dd>). For both elements, the end tag may be omitted.

The code below presents a definition lists with three elements: definition

lists and what it represents, unordered lists and what kind of marking symbols they

may have, ordered lists and what kind of numbering they may use. The way the

browser interprets the code is exemplified in Figure 5.11.

<body>

<p>

<dl>

<big>This is a definition list which nests other lists</big>

<dt> Definition lists

<dd> List of terms with a description for each one of them

<dt> Unordered lists

<dd> Unordered lists may have discs, circles or squares

216

 List with default marking (disc)

 one element

 another element

<ul type = ”square”>

List with squares

 Item 1 Item 2 Item 3

<dt> Ordered lists

<dd> Ordered lists may have numbers, small or capital alpha,

small or capital romans

 List with numbers (default)

 Element number 1 Element number 2

<ol type = ”I”> List with capital roman

 First element Second element Third

element Fourth element

</dl>

</p>

</body>

The title of the definition

list was formatted as big and

each term in the definition list

was formatted as bold, in order

to be emphasized. <dd>,

<dt> and tags were not

closed since HTML considers

both that <dd> and <dt> tags

are implicitly closed when

another one of the two elements

is opened or definition list is

closed. tag is implicitly

closed when another list item

element is opened or when the

list it belongs to is closed. Note

that if, by mistake, the tag

was not closed, then the text

remaining until the end of the

Figure 5.11 - Types of lists

217

webpage would have been displayed as bold. This is why it is very important to close

each start tag that has a corresponding end tag, as soon as not closing it might generate

errors throughout the entire page.

A good practice to use when writing HTML code is to close a tag just as it was

opened and then to go and fill its content.

5.3 Hyperlinks and pictures

5.3.1 Hyperlinks

The main reason to build a web page is for publishing information over the

Internet. Usually web pages are organized in web sites, representing collections of

web pages related through hyperlinks.

Hyperlinks are references that allow users to quickly access over the internet

resources like web pages, images, sound and video files. The anchor HTML

element is used for creating hyperlinks inside a webpage. The basic syntax for this

element is

 displayed_hyperlink

where url_of_web_resource is the value of the href property and represents

the relative or the absolute address where the referred resource is found.

displayed_hyperlink is the text or image that the visitor has to click in order to

access the resource. If there is no other attribute specified inside the opening tag of

the anchor then, by default, the referred resources is opened in the same browser

window when the visitor clicks on the hyperlink. The target attribute sets the place

where the resource will be opened. The _blank value forces the browser to open

the resource into a new window.

By default, in Internet Explorer hyperlinks have the following colors: blue for

unvisited hyperlink, purple for visited hyperlink and red for active hyperlink (an active

hyperlink is a hyperlink that the visitor just clicked). The colors cannot be modified

from inside the opening tag of the anchors. They may be set for the entire HTML page

by changing the values of the following attributes in the <body> opening tag: link for

default color, alink for active link and vlink for visited link.

<body link = ”green” vlink = ”brown” alink = ”orange”>

<p>

 Search on

Google <hr>

 Informatics website

 Course

website

218

</p>

</body>

In the code above, the attributes inserted in the body opening tag set up the

colors for the hyperlinks all over the page: green for normal hyperlinks, brown for

visited hyperlinks and orange for active hyperlinks.

Figure 5.12 - Default, accessed and active hyperlinks

The _blank value of the target attribute in the first and third link will force

the Google page to open in a new browser window, while the second link will open

in the same page, Figure 5.1. Note that if the hyperlink refers a page which is not on

the same website as the current webpage then the “http://” string must be used

before the address of the website. If this is omitted, the browser interprets the URL

as being on the same computer as the webpage and will return an error when the

hyperlink is accessed. If there is no trailing slash to subfolder references, like

“http://www.google.ro”, there will be two HTTP requests to the server because the

latter will add the trailing slash and will generate a new request. This should be

avoided, by adding trailing slash to all subfolder references, like

“http://www.google.ro/”.

Hyperlinks can also be used to create e-mails with a specific subject and

content, using the default mail editor installed on the visitor’s computer.

<body>

<p>

 Contact

<a href =

”mailto:dragos.vespan@ie.ase.ro?cc=vasile.avram@ie.ase.ro

& subject=Informatics Seminar&body=I would like to ask you

mailto:dragos.vespan@ie.ase.ro?cc=vasile.avram@ie.ase.ro%20&%20subject=Informatics%20Seminar&body=I%20would%20like%20to%20ask%20you%20the%20following%20question%20regarding%20the%20Informatics%20seminar
mailto:dragos.vespan@ie.ase.ro?cc=vasile.avram@ie.ase.ro%20&%20subject=Informatics%20Seminar&body=I%20would%20like%20to%20ask%20you%20the%20following%20question%20regarding%20the%20Informatics%20seminar

219

the following question regarding the Informatics seminar”>

Ask a question

</p>

</body>

The first anchor from the code above will create a new e-mail having the recipient

address already written in the To field. The second anchor creates an e-mail hyperlink

that includes more recipient addresses, the subject and the content, Figure 5.13.

Figure 5.13 - E-mail hyperlinks

The first parameter of mailto should always be preceded by ? and second and

subsequent parameters should be preceded by &. Still, this method is not

recommended for use on public web pages because there might be a lot of unwanted

e-mails sent to the specified e-mail address.

If the HTML page contains a lot of information and the user has to scroll a

lot from top to bottom, anchors may be used to create links that jump to certain

regions of the page. First of all, bookmarks have to be created by setting the name

attribute to HTML elements that are going to be bookmarked. Suppose, for

instance, that you want to bookmark the top of the page and the second chapter on

the page so that when the visitor loads the page he can directly jump to the second

chapter and when he finishes reading the page he can jump directly to the top of the

page. First of all, the bookmarks have to be created: one just after the <body> tag

and one just before the <h1> tag corresponding to the second paragraph. These

bookmarks are created by inserting empty anchors elements with name attribute

set.

<body>

220

<p> This is the introduction to the page </p>

 Jump to second chapter

<h1> First chapter </h1>

<p> ... A lot of text ... </p>

<h2> Second chapter </h2>

<p> ... A lot of text ... </p>

 Top of the page

</body>

In the code above, creates bookmark on the web

page that can be referred as #start. Once the bookmarks defined in the page, we

can create the links that will jump to these by setting the href property to the name

of the bookmark preceded by #. Thus when the visitor clicks on the text displayed

by Top of the page , the browser will jump directly to

the anchor named start, Figure 5.14.

Usually, named anchors are used for creating table of contents at the

beginning of large web pages. For each chapter inside the page, a bookmark is

created and hyperlinks to all these bookmarks are added at the top of the page. If

the browser cannot find a named anchor that was referred by a link, then it will

jump at the top of the page when that link is accessed.

Figure 5.14 - Using anchors inside the web page

5.3.2 Images

In order to make web pages more attractive and easier to read, the use of

pictures is recommended. Pictures can be inserted in a web page using the image

HTML tag whose basic syntax is:

where name_of_file represents the entire path and name of the file

containing the picture. If the picture file is on the same folder as the webpage, then

the path is not necessary. Usually, on websites, it is recommended that all pictures

221

are stored in a separate folder, like “img”, so they are managed easier. If a picture

called “sunset.gif” is stored in the “img” folder which is in the same folder as the

webpage, then the src value would be “img/sunset.jpg”. If a picture from the web is

used, then the value of src will be the entire URL of that picture, like

“http://www.fabiz.ase.ro/siglase2.jpg”. Be aware that, in HTML, everything

written between double quotes is case sensitive so there is a difference between

“siglaase2.jpg” and “SIGLAASE2.JPG”. Many web servers interpret differently

the two cases and may not send the resource if the URI string does not match

binary with the real URI of the resource..

When using the basic syntax of the image HTML element, the browser will

place the picture in its original size and in line with text, the same way as Word

places an inserted picture. This way, only one line of text can be displayed on both

sides of the picture. Usually, there should be more than on line of text written

beside pictures and this can be solved by using the align attribute with left or right

values. Also, if the original size of the picture is too big, then it will probably fill

the entire screen, so it has to be resized. Resizing of the image HTML element is

done by setting the number of pixels to width and height attributes. Attention

should be paid to original dimensions of the picture in order to keep its proportions

when it is resized.

A picture will behave like a hyperlink if its tag is nested inside an anchor

tag, like in the code below. Such a picture is surrounded by a square having the

same colors as hyperlinks, in all their states: normal, visited and active. This way,

if the visitor clicks on the first picture displayed by the code below then a new

browser window will open and will load the homepage from “http://www.ase.ro”.

<body >

<p>

This picture

is inserted using the basic syntax of image HTML element. <hr>

<img src="img/sunset.jpg" align = "left" width = "200" height =

"150" alt = "Most beautiful sunset"> In order to write several rows of

text beside the picture, you have to align it to the right or to the left.

You can do this by using align attribute.

<br clear="all">

This text begins under the picture no matter how the browser

window was resized.

The file for this picture

does not exist, so the alternate text will be displayed instead.

222

</p>

</body>

Also, the source of the first picture is an URL, which means that, in order to

be displayed when the webpage is accessed, the browser will first have to

download it from the internet. The use of many pictures with sources on the

Internet like this one is not recommended because the webpage will take time to

load on slow internet connections.

The second picture is aligned to the left and resized from its original size of

4000x3000 pixels to 200x150 pixels, Figure 5.15. Although the displayed picture

size is small, when the page is loaded the browser will download the entire file

whose dimension is about 2MB. Usage of such big files is not recommended unless

you want to create a photo gallery and let the visitor see the pictures in full size.

The source of the picture is a file located in the “img” folder, so the src attribute

contains only the relative path to this, “img/sunset.gif”.

Figure 5.15 - Using pictures in HTML

The use of the align = ”right” attribute forces the browser to display all the

text that follows beside the picture. The text will be written this way until the

bottom of the picture is reached, no matter if HTML elements like paragraphs or

headings are used. This might result in improper display of text if the window is

resized. In order to avoid this and to be sure that a paragraph starts always below

the picture, the break HTML element must be used with clear property set to ”all”.

223

The value of the alt attribute is displayed by the browser if the file of the

picture is unavailable and cannot be loaded.

5.4 HTML elements for defining layout of web pages

5.4.1 Tables

HTML table is one of the most powerful HTML elements. This element can

be used with a double purpose: one for representing data (true tables) and one for

building the layout used to present information on a webpage (false tables).

In HTML, tables are built starting from their top left corner, row by row and,

for each row, cell by cell. The HTML elements used for creating a table are:

- <table> ... </table> - define the beginning and the end of a table.

Child HTML elements are table rows or table bodies;

- <tr> ... </tr> - define the beginning and the end of a table row.

Child HTML elements are table cells or table headers;

- <td> ... </td> - define the beginning and the end of a table cell

(table data). Its content can be formed of simple text and/or any

HTML element that can be nested, including other tables;

- <th> ... </th> - define the beginning and the end of a table heading

and replace <td> ... </td>. They represent, in fact, table cells with

bold centered content;

- <thead> ... </thead> - define the table header, the section which

usually contains comlumn headers. Child elements are table rows;

- <tbody> ... </tbody> - define the beginning and the end of a

table section (table body). Child HTML elements are table rows;

- <tfoot> ... </tfoot> - define the table footer;

- <caption> ... </caption> - set up the title of the table.

The simplest table that can be built in HTML contains only one row and one

cell. The HTML code for building such a table is:

<table>

<tr>

<td> Cell content </td>

</tr>

</table>

A regular table that presents data contains several rows and several columns.

By default, a table built in HTML will not have any borders displayed in the

browser but only its content. This is good for layout tables but when the table

contains data its borders have to be displayed so that the visitor of the web page

224

reads easier the values on rows and on columns. In order to accomplish this, the

border attribute of the table opening tag has to be set to a value greater than 0.

<body >

<table border = "1">

<tr>

<th> </th> <th> Salespoint 1 </th> <th> Salespoint 2 </th>

</tr>

<tr>

<th> First quarter </th>

<td> € 20000 </td>

<td> € 30000 </td>

</tr>

<tr>

<th> Second quarter </th>

<td> € 25000 </td>

<td> € 35000 </td>

</tr>

<tr>

<th> Third quarter </th>

<td> € 27000 </td>

<td> € 30000 </td>

</tr>

<tr>

<th> Total </th>

<td> € 72000 </td>

<td> € 95000 </td>

</tr>

</table>

body>

The table defined in the code

above is presented in Figure 5.16. By

default, the cells of the tables are auto-

resizable so that they fit their content.

The size of the columns will match the

size of the cell containing the most text

from that column. If the window does

not allow each cell to be written on a

single row then cells with more text will

be vertically enlarged and so will be the rows they belong to.

Figure 5.16 - Table with headers on both

rows and columns

225

Because of the way the tables are constructed, by adding cells on rows, when

building a table you have pay attention to how many cells you put in each row.

Always the first cell on each row belongs to the first column; the second cell on each

row belongs to the second column and so on. Cells missing on one row are

considered to be the last cells of the rows and have no borders. For instance, if the

HTML elements defining the second and third cells of the third row in table from

Figure 5.16 are omitted, then the table will display some improper space inside,

Figure 5.17.

Still, there are cases when a

row contains one or more cells

spanning over two or more columns

or a column contains one or more

cells spanning over two or more rows.

Spanning a cell over more columns is

done using colspan attribute with the

value indicating the number of

columns that the cell spans over.

Spanning a cell over more rows is

done using rowspan attribute with

the value indicating the number of rows that the cell spans over. Both colspan and

rowspan attributes have to be written inside the opening tag of the spanned cell.

<body>

<table border = "5" bordercolorlight = "yellow" bordercolordark = "green"

cellpadding = "4" cellspacing = "5" style = "text-align:center">

 <caption> Sales on first two quarters in 2008 and 2009 </caption>

<thead style = "color:blue; background:yellow; font-weight:bold">

<tr> <td colspan = "2" rowspan = "2"> Sales </td> <td

colspan = "2"> 2008 </td> <td colspan = "2"> 2009 </td>

</tr>

<tr> <td> Salespoint 1 </td> <td> Salespoint 2 </td> <td>

Salespoint 1 </td> <td> Salespoint 2 </td>

</tr>

</thead>

<tbody style = "color:blue; background:lightyellow">

<tr> <th rowspan = "3"> First quarter </th> <th> January

</th> <td> € 8000 </td> <td> € 15000 </td>

<td> € 6000 </td> <td> € 10000 </td>

</tr>

Figure 5.17 - Cells omitted on one

row of a table

226

<tr> <th> February </th> <td> € 6000 </td> <td>

€ 8000 </td> <td> € 4000 </td> <td> €

7000 </td>

</tr>

<tr> <th> March </th> <td> € 6000 </td> <td> €

7000 </td> <td> € 3000 </td> <td> € 5000

</td>

</tr>

</tbody>

<tbody style = "color:green; background:lightyellow">

<tr> <th rowspan = "3"> Second quarter </th> <th> April

</th> <td> € 3000 </td> <td> € 5000 </td>

<td> € 2000 </td> <td> € 8000 </td>

</tr

<tr> <th> May </th> <td> € 4000 </td> <td> € 7000

</td> <td> € 4000 </td> <td> € 5000 </td>

</tr>

<tr> <th> June </th> <td> € 5000 </td> <td> €

4000 </td><td> € 4000 </td> <td> € 3000 </td>

</tr>

</tbody>

<tfoot style = "color:red; background:yellow; font-weight:bold">

<tr>

<td colspan = "2"> Total </td>

<td colspan = "2"> € 78000 </td>

<td colspan = "2"> € 61000 </td>

</tr>

</tfoot>

</table>

</body>

The table generated from the code above is displayed in Figure 5.18. The

code exemplifies the most commonly used table attributes and tags.

The border attribute sets up the thickness of the table’s outside border. Its

color can be set by using the bordercolor attribute or bordercolordark and

bordercolorlight attributes. If bordercolor is used and the border size is greater than

1 then the browser will create a shadowing effect by setting a darker nuance of the

color for the top and left margins and a brighter nuance for the right and bottom

margins of the whole table and vice versa for the interior borders of the cells. This

way it creates the effect of light coming from top left corner of the screen.. The two

227

nuances can be set as different colors by using bordercolordark and

bordercolorlight attributes in the <table> opening tag.

Figure 5.18 - A complex HTML table

The cellspacing attribute sets up the thickness of the table’s inside borders

and rules. It actually represents the distances between cells and between margin

cells and outside borders.

By default, as exemplified in Figure 5.16, the cell with the most text on each

column will fit exactly to its content, with no space between the text and the left

and right margins of the cell. This can be annoying if it happens to most of the cells

of the table so, an extra space between the content and the margins of the cell is

required. This can be accomplished by using the cellpadding attribute whose value

sets up the minimum space between the text contained in a cell and cell’s margins,

on columns and on rows.

All the attributes set up in the <table> start tag, including the style, will be

applied throughout the entire table. If their values are changed inside the opening

tag of a table element, then the values defined in the <table> tag will be

overwritten for that element.

The caption HTML element defines the table title which will be displayed

above the table. Table head, table body and table foot HTML elements define

regions inside the table. They are useful because the attributes they contain inside

the opening tag will be applied for the entire region, without the need of defining

the attributes for each cell. In the example above, there are four regions defined in

the table among which two table bodies having their content displayed with

228

different colors so that it is easier for the reader to distinguish the two areas. For

table head and table foot, the font was bolded and for first two columns of the table

bodies, table heading element was used. Formatting the text of the table elements is

done using styles, rule that may be applied to most of the HTML elements.

The layout of the table requires that the first cell spans over two rows and

over two columns. This is done by using both colspan and rowspan attributes with

values of 2. When spanning a cell over two rows, the cells of the second row are

inserted from the left to the right, without affecting the space occupied on the row

by the spanned cell. This way, if the spanned cell is the first one on the upper row

then the first cell inserted in the second row will actually be on the second column.

If a cell is spanned over two columns, then its width is resized according to the

maximum widths of the cells belonging to each column.

<body>

<table border = "1">

<caption> Table with wrong spanning </caption>

<tr>

<td> Wrong spanning </td>

<td rowspan = "2"> Row spanned cell </td>

</tr>

<tr>

<td colspan = "2"> Column spanned cell </td>

</tr>

</table>

</body>

Using spanning requires a lot of attention. The code above exemplifies the

misuse of spanning, by setting the second cell on the first row to span over two

rows and the first cell on the second row to span over two columns.

Figure 5.19 - Misuse of colspan and rowspan

Because of the way the tables are build, starting from the top left corner, row

by row, by setting cells on each row, the second row of the second cell in the first

row and the second column of the first cell in the second row will overlap, causing

also their content to be overlapped, Figure 5.19.

229

One very common practice is to use HTML tables for formatting the layout

of HTML pages. This helps the designer to divide the page in as many sections as

he wants. The advantage of using tables derives from the fact that cells of the table

are independent and adding a content to a cell will not affect the other cells.

Before actually building the webpage, the designer should first draw the layout

of the page on a piece of paper in order to figure out what kind of table he has to

create and what kind of spanning he has to apply. Suppose that we want to create a

page with two navigation bars (an horizontal and a vertical one), one footer and with

two columns content. The layout of the table would look like in Figure 5.20.

The table for this layout contains

three rows and three columns: on the first

row, one cell spanned over three columns;

on the second row, one cell spanned over

two rows and another two cells; on the

third row, one cell spanned over two

columns. The content of the cell in the

first row should be center-aligned and the

content of the cell spanned vertically

(from the second row) should be vertically

top-aligned. Also, the table must not be

visible so the border attribute will be

omitted.

When building a HTML table, its rows and columns are resized according to

their content. It means that if there is no cell with much content on a column then

that column would be very narrow and would lead to improper displaying. In order

to fix this, the width of the columns in the table should be specified. Width can be

specified in pixels or in percents. When specified in pixels, the width of the entire

table will be the sum of largest cell widths per column and it will not vary

depending on the size of the browser window or on the resolution. If the size of the

window is smaller than the table, then scroll bars will be displayed to be used in

order to view content outside the displayed area.

When width are specified in percents, then they are relative to the width of

the entire window: a table with 100% percent width will extend over the entire

window and a table with 50% width will always occupy half of the window.:

<body >

<table align = "center" style = "width:75%; text-align:center" bgcolor

= "orange" cellpadding = "4">

<tr>

Figure 5.20 - Layout of HTML page

230

<!-- This is the horizontal links bar -->

<td colspan = "3" >

<h2> Search Engines </h2>

 Google

 Yahoo!

 Bing

 Ask

</td>

</tr>

<tr>

<!-- This is the vertical links bar -->

<td valign = "top" rowspan = "2" style = "width:150px; text-

align:left">

<h3> Informatics sites </h3>

 Informatics Website

 Course Website

 Tutorials Website

</td>

<!-- This is the left column -->

<td style = "text-align: left">

This text is written on the first column. Any HTML element for

formatting text can be applied. Pictures and hyperlinks can

also be inserted. The text was left-aligned in this cell.

</td>

<!-- This is the right column -->

<td style = "width:200px; text-align:left">

<img src = "img/sunset.jpg" align = "right" width = "80"

height = "60">

A picture with align = "right" attribute was inserted here. If

data has to be presented, then a table can be nested here.

</td>

</tr>

<tr>

<!-- This is the footer of the page -->

231

<td colspan = "2" style = "height:10px">

2009 - Economic Informatics

</td>

</tr>

</table>

</body>

The code above is shown by the browser as in Figure 5.21: the table is set to

occupy 75% of the window, to have center aligned text and orange background.

The absence of the border attribute forces the browser to hide the margins of the

table. Also, for a greater visibility, the distance between the text and the margins of

the cells is increased through the cellpadding attribute.

The <!-- … > tag is used for inserting comments into the HTML code.

Everything written inside this HTML tag will not be displayed in the browser

window and will help the author to remember what each section of the page

represents.

Figure 5.21 - Layout table

Basically, the table contains three rows and three columns. The first row

contains only one cell which spans over all three columns which represents the

horizontal links bar. If there is a width in pixels specified for this row, it will be

ignored, being overwritten by the size of the table.

The first cell of the second row spans over the last two rows and contains the

vertical links bar. There are two alignments set for this cell. the top vertical

alignment will always display the contained links in the upper part so the visitor

has quick access to them no matter how big is the web page. Also, for a better

view, the horizontal alignment is set to left and overrides the default center

232

alignment of the table, which is set up in the <table> opening tag. Due to the fact

that the content of this cell is improbably to change over time, the size of this cell is

set to 150 pixels so it just fits the text of the hyperlinks inside. This size will be

kept no matter how much the browser window is enlarged.

The second and the third cell of the second row contain left-aligned text,

overwriting the default center alignment of the table. The third cell has a specified

width of 200 pixels mainly because of the picture contained. A lower width will

force the improper display of single words beside the picture. Like the first cell, the

width of this cell will be kept constant to this value no matter how much the

window is extended.

Due to the fact that both of first and third cells have fixed size widths, the

middle cell will be always resized depending on the size of the browser window or

on the resolution of the screen so that the sum of the three cells sizes equals 75% of

the window as the table is set to occupy. Note that if the browser window is shrunk

too much, then all the columns will be dimensioned to smaller size so that their

content is displayed as properly as possible.

The third row of the table contains only one cell spanning over two columns.

Because of the first cell in the second row which spans over two rows, this cell will

actually begin on the second column, so it will span over second and third columns.

Its height is fixed to 10 pixels. There is no alignment specified in its opening tag,

so it will keep the default center alignment of the table. Because of its spanning,

the text contained in this cell will be aligned relatively to the second and the third

column.

5.4.2 Horizontal Rule

Almost the same layout can be obtained by using div HTML element with

<div> and </div> opening and closing tags.

<body>

<div style = " margin: auto; float: center; width: 75%; text-align: center;

min-width: 400px; min-height: 230px; background-color: orange">

<div>

<!-- This is the horizontal links bar -->

<h2> Search Engines </h2>

 Google

Yahoo! <a href =

"http://www.bing.com"> Bing

 Ask

233

</div>

<div style = " float:left; width:150px; text-align:left; ">

<!-- This is the vertical links bar -->

<h3>Informatics sites</h3>

Informatics Website
 <a href =

"http://www.avrams.ro"> Course Website
 <a href =

"http://www.w3schools.com"> Tutorials Website

</div>

<div style = "float: right; width: 200px; text-align:left; padding: 10px">

<!-- This is the right column -->

<p>

<img src = "img/sunset.jpg" align = "right" width = "80"

height = "60">

A picture with align = "right" attribute was inserted here, in

the right floating div. If data has to be presented, then a table

can be nested here.

</p>

</div>

<div style = "margin-left:150px; margin-right: 200px;text-

align:left; padding:10px ">

<!-- This is the middle column -->

<p>

This text is written into the remaining div. Any HTML element

for formatting text can be applied. Pictures and hyperlinks can

also be inserted. The text was left-aligned in this cell.

</p>

</div>

<div style = "text-align: center;">

<!-- This is the footer of the page -->

2009 - Economic Informatics

</div>

</div>

</body>

The Internet Explorer browser displays the code above as in Figure 5.22.

When using div HTML element, the approach is slightly different than when using

tables for layout. First of all, there is only one HTML element used, div, and not

more like in tables: table, tr, td, thead, tbody, tfoot and so on. Then, the most used

columns layout based on div is made up of three columns: a div HTML element

representing the left column, a div HTML element representing the right column

and a div HTML element that fills the space between the two columns.

234

In our case, the page occupies 75% of the window and is center aligned. In

order to accomplish this, a div HTML element was used just after the <body>

opening tag to encapsulate the entire content of the body, which we will call

container. Its closing </div> tag is just before the </body> closing tag. Properties

for this div, as for the other div HTML elements too, are defined using style

attribute and are separated through semicolon „;”. The width can be set as an

absolute value, in pixels, or as a relative value, in percents. In the example, the div

content will always occupy 75% of the browser window. Float property defines the

position of the div inside the HTML element that contains it, which is the body.

When centered, it has to be used in conjunction with the margin property set to

auto, required for adapting the right and left margin of the page so that the div is

always center aligned. The content of the div is centered by using the text-aligned

property.

The width property resizes the div content when the window is resized. If the

window is resized to a small width, then 75% of this may not be enough to display

the entire content. This is why the min-width property is used. In this case, it forces

the browser to display horizontal rules when 75% of its width is less than 400

pixels. This ensures that the content of the div is properly displayed no matter how

much the browser window is shrunk. The min-height property, correlated with the

background-color property, ensures that the background is orange on at least 230

pixels height, no matter the height of the div content.

Figure 5.22 - Layout using div HTML element

Once the div container is defined, it can be divided into more areas by

inserting nested div HTML elements. For the layout in Figure 5.22, there are five

nested div HTML elements.

235

The first div has no parameters. This means that all its properties will be

inherited from the container div: width, text alignment, background color. In fact,

unless the properties are changed, all the nested div HTML elements will inherit

the container properties. Still, the height of this div will be auto resized depending

on its content.

The three columns are created by using three consecutive div HTML

elements. The float property sets the second div to be the left column and the third

div to be the right column. For both of these, the width properties set up their fixed

width and the text-align properties overwrite the text alignment of the container and

align their text to the left. The padding property used for the third div ensures a

distance of 10 pixels between the content of the div and its margins.

The fourth div HTML element has no float property set, so its content will be

displayed in the same line level as both left and right div HTML elements. In order

to avoid its content being displayed over the content of the other two div HTML

elements, its margins are set at a distance of 150 pixels from the left margin and

200 pixels from the right margin of the container through margin-left and margin-

right properties.

Because there is no width specified for the fourth div, it will automatically

resize when the browser window is resized. The minimum width of the container

(400 pixels) and the distances of 150 pixels and 200 pixels from the left and right

margins of the container will ensure that the width of this fourth div will not drop

below 50 pixels no matter how much the browser window is shrunk. More, when

the width of the page is reduced, so is the width of this div. This will result in the

increase of its height so that the entire content is displayed. Because this is a nested

div, the height of the container will also be increased.

The final div is a simple one, with center aligned content. It will always be

displayed under the fourth div which is resizable with respect to the resolution of

the screen or to the size of the browser window.

div HTML elements are more powerful and more flexible than layout tables.

They are easier to use, to position and to replace. div elements support 3-D

positioning and can be displayed one over another. Lately, it is recommended to

use div HTML elements for layout instead of HTML tables.

5.4.3 Frames

Another method for defining the layout of a web page is the use of frames.

Frames actually divide the web page in several sections, each of the section loading

a different web page. The layout used as example in this chapter can be obtained by

using the following code:

236

<html>

<head>

<title> Frames example </title>

</head>

<frameset rows = "100,*,50">

<frame src = "div1.html">

<frameset cols = "200 ,*,200">

<frame src = "div2.html">

<frame src = "div3.html">

<frame src = "div4.html">

</frameset>

<frame src = "div5.html">

</frameset>

</html>

The code above is displayed by the browser as in Figure 5.23. With frames,

more web pages are displayed in the same browser window. Each section of the

page is represented by a frame and independently displays a different web page.

This is one of the reasons why frames are not used very widely: the web developer

must manage more html pages. Also, pages containing frames are difficult to print.

Figure 5.23 - Frames layout

As you can see in the code above, the body HTML element was replaced by

the frameset HTML element. This is because the two of them cannot exist on the

237

same page. The frameset HTML element defines how to divide the parent HTML

element into horizontal or vertical frames, depending on the attribute used in

<frameset> opening tag. In the code, the parent of the first frameset HTML

element is html. The attribute is rows and the value of this attribute has three

components: 100, *, 50; which indicate the height of each row. This means that the

entire window (content between <html> and </html>) will be divided into three

rows: the first row will have 100 pixels height, the third row will have 50 pixels

height and the second row will occupy the rest of the window. Each row will be

defined by a frame tag or by a frameset element.

The frame tag defines which html page is loaded into the section it

represents. The name of the page is defined in the value of the src attribute inside

the tag. Each one of the pages displayed in the frames is independent of the others,

have its own HTML structure and code and may be displayed separately. For

instance, the entire code of the HTML page loaded in the first frameset, div1.html,

is presented below:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">

<html>

<head>

<title> HTML basics </title>

</head>

<body style = "text-align: center; background-color: orange; ">

<!-- This is the horizontal links bar -->

<h2> Search Engines </h2>

 Google

Yahoo! <a href =

"http://www.bing.com"> Bing

 Ask

</body>

</html>

Practically, the body HTML element has the same content as the first div

from Figure 5.22. To get the same result as in the examples above, the body of

div2.html will have the same content as the second div, the body of div3.html the

same content as the third div and so on.

The first and the third elements of the frameset defined for the entire page

display HTML pages div1.html and div5.html. The second element is represented

by a nested frameset element, whose cols attribute value contains three elements:

200, *, 200. This means that this section will be divided into three columns where

238

the first and the third have a 200 pixels width and the second occupies the rest of

the section. Each column is defined by a frameset element which will load the

webpage specified in its src attribute.

In order to keep consistency, all HTML pages displayed should have the

same background color specified in the style attribute of the <body> opening tag:

orange.

5.4.4 Colors

Colors in HTML are made up of the three basic components of light: RGB –

red, green and blue. Computer, LCD TVs or mobile phone screens have different

resolutions that are measured in pixels: 1024x760 resolution means that the screen

can display 1024 pixels in width and 760 pixels in height. Each one of these pixels

is composed of three subpixels: a red one, a green one and a blue one. When all the

subpixels are shut off, the pixel will not lit which means that it will be black. When

all subpixels are lit at maximum, the pixel will display the combination of the three

colors, which is white. If only the red subpixel is lit and the other two are shut then

the pixel will light red and so on.

Most of the screens can display 256 values of intensity for each subpixel:

from 0, when the subpixel is completely shut off, to 255 when the subpixel is lit at

maximum. It means that, taking in account the three kinds of subpixels they

contain, screens can display a maximum of 256x256x256 = 16.777.216 variations

of colors, from dark black to bright white. This is why you see that monitors, for

instance, can display 16.7 million colors.

In HTML, colors are represented in three ways: by name, by hexadecimal

value or by RGB value. W3C HTML and CSS standards have listed only 16 valid

color names: aqua, black, fuchsia, gray, green, lime, maroon, navy, olive, purple,

red, silver, teal, white and yellow. Most of the browsers though can recognize

almost 150 color names: hotpink, darkred, lightcoral etc.

Still, defining a color by its name is very restrictive: less than 200 colors can

be represented this way, out of 16.7 million. In order to represent any color, the

combination of red, green and blue intensities may be used.

The hexadecimal representation is made up of 6 hexadecimal digits preceded

by #: two digits for the intensity of each subcomponent. This way, colors vary

from #000000 which is pure black to #FFFFFF which is pure white. #FF0000

represents pure red, #00FF00 is pure green and #0000FF is pure blue. Remember

that FFH decimal value is 255. You can use any combination you want: #10FA0B

represents a color made from red with intensity 10H (whose value is 16), green with

intensity FAH (which is 250) and blue with intensity 0BH (whose value is 11).

239

Because hexadecimal values are difficult to compute quickly, the RGB

representation of colors may be used. This way, pure black is represented as

RGB(0,0,0), pure white as RGB(255,255,255), pure red as RGB(255,0,0), pure

green as RGB(0,255,0) and pure blue as RGB(0,0,255). The color above, #10FA0B

can be represented as RGB(16,250,11). Keeping the same value for all

subcomponents will result in nuances of grey - for instance #3A3A3A or

RGB(58,58,58).

The RGB representation is useful when you want to visually choose a color.

For this, you can start Paint, access Edit Colors command from the Colors menu

and press Define Custom Colors button. There you can visually pick any color you

want and its red, green and blue values will be displayed in the textboxes below,

Figure 5.24.

Figure 5.24 - Choosing colors in Paint

Color values are usually used for properties defined inside the style attribute

of HTML elements opening tag.

5.5 Styles and CSS

The main purpose of HTML is to define the content of the document by

using HTML elements like headings or paragraphs and not to format the way the

web pages look. When the text on a webpage is formatted by defining HTML

elements individually for each section of the page that has to look differently, it is

240

very difficult to keep track of all these elements and to maintain their consistency

especially when the web developer has to deal with large websites.

In order to solve this problem, W3C introduced CSS (Cascading Style

Sheets) which are recommended to be used for changing different HTML elements

properties, like color, face and size of the font used for displaying its content,

alignment, width etc. CSS styles are combinations of property:value pairs

separated through semicolons (;), encapsulated between { and }. Styles may be

applied to one or more HTML elements.

There are three types of CSS styles that can be defined:

- Inline style, defined directly inside the opening tag of an HTML element.

This type of style applies exclusively to the HTML element it was defined

for and has the higher priority (it will be applied over the styles defined for

the HTML element category and over the styles defined for parent HTML

elements);

- Embedded style, defined in the head section or in a CSS file. This type of

style will be applied as default to all HTML elements on the page that have

the opening tag it was defined for;

- Named style, defined also in the head section or in a CSS file. This type of

style will be applied to all HTML elements that belong to the class it

represents, through the class=”style_name” attribute written in their

opening tag.

Inline styles can be defined for all HTML elements inside the body of the

web page. The syntax for an inline style is:

<tag style=”property:value; property;value; … ; property:value”>

An inline CSS style will be applied exclusively to the HTML element in

whose opening tag it was defined, affecting all its child elements. All the elements

defined before the opening tag or after the closing tag of the HTML element

containing the inline style remain unaffected by this.

<body style = "background-color: lightyellow; text-align: center; font-family:

verdana; font-size: 30px; color: blue">

The regular text on the page is blue on light yellow background color and

is written centered with 30 pixels size arial.

<h1 style = "background-image: url('img/back.jpg'); text-align: right;

width: 60%; margin-left: 120px; color: #FF00F0">

 HTML basics

</h1>

<p style = "font-size: 20px">

241

This text has the font size changed to 20 pixels

<b style = "color: RGB(255,128,10)">

and this bold text also has a changed color

</p>

<p style = "text-align: right; background-color: blue; color: lightyellow">

This text reverses the default colors.

</p>

 </body>

The code above exemplifies the use of inline CSS styles and the way Internet

Explorer interprets it is shown in Figure 5.25. First of all, an inline style is applied

to the entire body, being defined in the <body> opening tag. All the settings

defined by this style will be inherited by all the HTML elements used in the body:

light yellow background color, center alignment of text contained, verdana font

family, 30 pixels font size and blue font color.

The inline style defined in the heading overwrites the background setting by

displaying an image over the light yellow background of the body. The image is

used with its original size: if this is greater than the area used for the heading

element then only the top left part of the image will be shown; if the original size

of the image is smaller than the area it is used for then the image will be multiplied

horizontally and vertically until the area is filled. The width property sets the

percent from the pages’ width that the heading occupies and the left-margin

property sets the distance of the heading area from the left border. All inline style

settings (background, font color) will be applied only to this area, including all

nested HTML elements.

Figure 5.25 – Use of inline styles

The inline style defined in the first paragraph overwrites only the font size

setting defined in the <body> opening tag, size which will be applied to b nested

element also. The inline style defined in the opening tag overwrites, by

242

inheritance, the default font color. The inline style defined in the second paragraph

overwrites the background color, font color and alignment of the text it contains.

Suppose there are twenty paragraphs on the web page and you want to apply

the same style for all of them. Using inline CSS styles is not feasible since it takes

a lot of time and a lot of code to write and complicates very much the procedure of

changing the values of the properties used. In this case, embedded styles are

recommended.

Embedded CSS styles set properties that will be applied as default for all tags

they were defined for, throughout the entire web page. Embedded styles can be

defined in the head section of the HTML page or in a separate Cascade Style Sheet

(.css) file. When defined in the head section, the style HTML element is used with

type attribute set to “text/CSS” inserted in the <style> opening tag. Each embedded

style is defined using the following syntax:

tag_name

{ property:value; property:value;… property:value}

The order in which embedded styles are defined is not important. The code

below defines embedded CSS styles for paragraph, bold and heading 1 HTML

elements and exemplifies how inline styles properties overwrite embeded styles

properties.

<html>

<head>

<title> HTML basics </title>

<style type="text/css">

p{

font-size: 20px;

text-align: justify; }

b{

color: RGB(255,128,10); }

h1{

background-image: url('img/back.jpg'); text-align: right;

color: #FF00F0; }

</style>

</head>

 <body style = "background-color:lightyellow; text-align: center; font-

family: verdana; font-size: 30px; color: blue">

This is the default style of the web page, defined in the <body>

opening tag.

<h1> HTML basics </h1>

<p> This is the default paragraph style with default bold style

 defined in the head section </p>

243

<h1> Default heading style </h1>

<p style = "text-align:right; background-color: blue;

color:lightyellow"> Inline style defined in this paragraph is

applied over the default paragraph style </p>

 </body>

</html>

The code above is displayed by Internet Explorer as in Figure 5.26. Note that

the simple insertion of an HTML element that has an embedded CSS style defined

(like p, b or H1) will display its content using that style. Still, if there is any inline

style defined for an HTML element then it will be applied over the embedded one.

The last paragraph, which contains an inline style too, uses the font size of 20

pixels defined in the embedded style. For the text-align property, the value right

defined in the inline style overwrites the value justify defined in the embedded

style and, therefore, the text is right aligned. The value blue for the background-

color property defined in the inline style of the same paragraph overwrites the

lightyellow value for the same property which defined in the inline style of the

<body> opening tag. Therefore, this paragraph will display center aligned light

yellow text on blue background.

Figure 5.26 - Use of tag styles

The web developer can also define named CSS styles which can be applied

to different html elements by simply using the name of the style. Like embedded

styles, named styles can be defined either inside the style HTML element in the

head section or in a separate CSS file. A named style can be general when its name

244

starts with a simple dot (.name_of_style) in which case it may be applied to any

HTML element inside the body, or restricted to a specific tag when its name starts

with the name of the tag followed by dot (tag_name.name_of_style) in which case

it may be applied only to HTML elements associated with the tag.

<html>

<head>

<title> HTML basics </title>

<style type="text/css">

p{

font-size: 20px;

text-align: justify;

color:lightblue; }

.emphasize {

color: red;}

h1.bgimage {

background-image: url('img/back.jpg');}

</style>

</head>

 <body style = "background-color:lightyellow; text-align: center; font-

family: verdana; font-size: 30px; color: blue">

This is the default style of the web page.

<h1> HTML basics </h1>

<p> This is the embedded paragraph style </p>

<h1 class=“bgimage”> Heading with background picture. </h1>

<p class=“emphasize”> This is emphasized paragraph </p>

<h1 class=“emphasize”> This is emphasized heading </h>

<h1 class=“emphasize bgimage”> Two classes are combined </h1>

 </body>

</html>

The code above exemplifies the use of all types of styles and the way that

Internet Explorer displays it is represented in Figure 5.27. The default webpage

style is defined as an inline style inside the <body> opening tag. In the style

HTML element from the head, there are one embedded style, one general named

style and one tag named style defined.

Applying named styles to HTML elements is done by using the class

attribute in their opening tag, with the value given by the name of the style. The

value of the class attribute may contain more names separated by space, which

means that the HTML element will apply several styles in the order they are

specified. The first heading uses the default page style and the first paragraph uses

the embedded style applied over the default page style. The second heading applies

245

the bgimage style and the second paragraph applies the emphasize style. Because

bgimage is a tag restricted

style, it will have no effect

if inserted in a paragraph

HTML element. emphasize

is a general named style so

it can be applied both to h1

and p HTML elements. The

last heading applies two

styles: the general

emphasize style and the

bgimage tag restricted style.

CSS styles can also be defined for HTML elements having the id attribute

set. The value of this attribute represents actually a name given for the HTML

element, which uniquely identifies this element over the entire web page. It is very

useful when dynamic changes have to be applied to a certain HTML element

identified by its unique id. For instance, the following paragraph

<p id = “firstparagraph”> First paragraph on the page </p>

may be identified by its id, which is “firstparagraph”. None of the other

HTML elements on the same page may have the same id.

A CSS style may be defined for a single element of the webpage with a

certain id. The syntax for this type of style is:

#id {property:value; property:value;…property:value}

where id represents the id of the HTML element that the style was defined

for. As an example, suppose that the first paragraph on the webpage should always

be formatted with italic green text and indented with 30 pixels. The following style

can be defined either in the head section of the document inside the style HTML

element or in a separate CSS file:

<style>

#firstparagraph

{

color: green;

text-indent: 30 px;

font-style: italic;

}

</style>

Figure 5.27 - HTML styles

246

This way, the paragraph with the id=”firstparagraph” specified in the opening

tag will apply the formatting element from the defined #paragraph style.

As mentioned above, styles can also be defined in a separate file having .css

extension. This is useful when consistent styles have to be applied on all the web

pages of a website.

p{ font-size: 20px; text-align: justify; color: blue;}

b{ color: RGB(255,128,10); font-size: 25 }

body{background-color: yellow;}

h1{ text-align: right; color: #FF00F0; }

.emphasize {color: red; font-weight:bold; border-style:solid; }

h1.bgimage {background-image: url('img/back.jpg'); text-align: left;}

#firstparagraph {color: green; text-indent: 30 px; font-style: italic; }

The code above represents an example of css content. In order to apply the

styles defined in the code above, this code must be either included inside a style

HTML element in the head section of the page or saved in a separate file, with .css

extension. When styles are saved inside a style HTML element in the head section

of a web page, they will be applied only to that page. If styles are saved in an

external file then they will be applied to all web pages that include a reference to

this file. Note that the CSS file will not contain any HTML tags (not even <html>,

</html>, <head>, </head> or <body>, </body>). Suppose the code above is

saved in the file styles.css . The reference to this external CSS file is created by

inserting the <link> tag inside the head section of the page, with the attributes rel =

"stylesheet", type = "text/css" and href = "styles.css" .

<html>

<head>

<link rel = "stylesheet" type = "text/css" href = "styles.css" />

<title> HTML basics </title>

</head>

 <body>

<h1> Default Heading 1 </h1>

<p id = "firstparagraph"> This is the first paragraph with id

#firstparagraph . </p>

<h1 class = "bgimage"> Heading 1 - class bgimage. </h1>

<p> This is the default paragraph with default bold style. </p>

<h1 class = "emphasize"> This is emphasized Heading 1 - class

emphasize </h1>

<p class = "emphasize"> This is emphasized paragraph - class

emphasize </p>

<h1 class = "emphasize bgimage"> This Heading 1 belongs to 2

classes: emphasize and bgimage </h1>

247

 </body>

</html>

Figure 5.28 exemplifies the use of .css for a webpage containing the code

above. The page represented on the left side of the figure misses the <link> tag

from the head, which means that it is not linked to any css file, so will display

everything with browser default settings. The page represented on the right side of

the figure is linked to the css file, so it will apply the styles defined there.

In CSS (Cascading Style Sheets), multiple styles applied to the same element

will cascade into one in the following order, where number 7 is the last style

applied (has the highest priority):

1. Default styles of the browser;

2. Styles defined in external CSS file for a parent HTML element;

3. Styles defined in the head section of the page for a parent HTML element;

4. Styles defined in the opening tag of a parent HTML element;

5. Styles defined in external CSS file;

6. Styles defined in the head section of the page;

7. Styles defined in the opening tag of the HTML element (inline styles).

Figure 5.28 – Comparison between single webpage (left) and web page linked to .css

file (right)

If the class specified inside the opening tag of an HTML element is not found,

then the browser will not apply any style, ignoring the class attribute. The left webpage

in Figure 5.28 has no link to the CSS file which contains style definitions for classes

emphasize, h1.bgimage and for #firstparagraph id. This way, although the first

paragraph has the #firstparagraph id, the first heading belongs to the bgimage class,

the third paragraph belongs to emphasize class and the last heading belongs to both

emphasize and bgimage class, these HTML elements are shown with the default

browser setting, like they had no attributes in their opening tags.

248

On the other hand, the bold text from the first paragraph inherits the italic font

style defined in the CSS file for the #firstparagraph id that the container paragraph has.

For this text, first the paragraph there are four styles applied in this order:

1. Default browser style – makes the text bold;

2. Embedded paragraph style defined in the CSS file – makes the color of the

text blue, the alignment justified and sets the font size to 30;

3. The style defined in the CSS file for the #paragraph id to which the

container paragraph belongs – changes the text color to green, indents the

text of the entire paragraph with 30 pixels and sets the font style to italic;

4. Embedded bold style defined in the CSS file – changes again the color to

RGB(255,128,10) and increases the font size to 25.

This way, the bold HTML element from the first paragraph will display a text

with the following characteristics: bold weight and italic style, size of 25 and color

defined by RGB(255,128,10) combination.

5.6 Forms in HTML

It might happen that when you visit a webpage, you are asked to fill in some

survey where you have to answer different question by choosing one of the suggested

answers, checking one or more answers or writing text on how you feel about a certain

product or a certain service. Also, when you registered on a website, usually you are

asked for your e-mail address, for a password and maybe for some personal data like

gender, home address, phone number and so on.

Collected information is usually sent to a server which processes it and takes

appropriate measures: sends you an e-mail with registration data, adapts the webpage

layout and content according to your preferences, records your data into a database for

further analyses of survey’s results. All this information is collected by using forms

inserted on the visited web pages. A form contains different elements, called controls,

which allow the visitor to interact with the webpage in different ways: entering some

text, clicking a button, choosing or checking an option.

A form HTML element is defined using <form> and </form> tags and may

include controls, text and markups (headings, paragraphs, lists) which define its layout.

A form represents a container for all the controls defined between its opening and

closing.

The following controls can be defined inside a form HTML element: -

buttons; - checkboxes; - radio buttons; - menus; - text inputs; - file select; - hidden

controls; - object controls.

Each control can be identified by the value of its name attribute. The scope of

the name attribute of a control is the form it belongs to. This means that if there are

249

two different controls with the same name but on different forms then they can be

uniquely identified by their names throughout the entire webpage. Grouped controls,

like checkboxes and radio buttons, may share the same name on the same form, the

difference between them being made by their value attribute.

Each control has both a initial and a current value, represented by character

strings. The initial value may be specified using the value attribute. When the form is

loaded, the current value is set to the initial value and may be changed by the visitor of

the page or by scripts. The initial value never changes so the control will be set back to

this when the form is reset or the page is reloaded.

Most of the controls can be defined using <input …/> tag where the type

attribute specifies the type of control used. There are ten controls that can be defined

using the <input …/> tag, by specifying the following values of the type attribute:

- text: creates a text input control with only one line where the visitor may insert

any text: e-mail address, name, phone number etc.;

- password: a text input control which displays a generic character like asterisk

instead of each character;

- checkbox: an input control which has an on/off switch that may be toggled by

the visitor. More checkboxes can be switched on, no matter they share the

same name or not;

- radio: an input control which has an on/off switch. If more radio buttons share

the same name on the same form, the visitor may select only one of them;

- submit: a button that submits the form when pressed by the visitor. All the

controls names and their values will be sent for processing to the default

processing agent specified in the <form> opening tag;

- image: a submit button decorated with an image;

- reset: a button that resets the form when pressed by the visitor. All the controls

on the form will be set back to their initial values;

- button: a button that can be pressed by the visitor and that executes scripts

depending on its defined events;

- hidden: controls that are not displayed but have associated values which are

submitted with the form;

- file: controls that allow the visitor to select a file in order to submit its content.

<body>

<form action="mailto:dragos.vespan@ie.ase.ro" method="post"

enctype="text/plain">

First name: <input type="text" name="firstname">

Middle name: <input type = "text" name="middlename"

style="width:25px" maxlength = "2">

Last name: <input type="text" name="lastname">

250

<label for="email"> E-mail: </label>

<input type="text" name="email" id="email" size = "40">

Password: <input type = "password" name = "password">

<fieldset>

<legend> Monthly income </legend>

<input type="radio" name="income" value="unspecified" checked

= "checked"> I don't want to specify it

<input type="radio" name="income" value="low"> 0 - 700

<input type="radio" name="income" value="medium"> 701 -

1700

<input type="radio" name="income" value="high"> > 1701

</fieldset>

I want password to be sent by e-mail <input type="checkbox"

name="notifications" value="email" checked = "checked">

I want to receive the newsletter by e-mail<input type="checkbox"

name="notifications" value="newsletter">

<label >

I want to receive special offers by e-mail

<input type="checkbox" name="notifications" value="offers">

</label>

<label for="img"> You can submit the form: </label>

<input type = "image" src="img/button.jpg" id="img" alt=”Submit now”>

 Please attach your CV if available:

<input type = "file" value="Choose a file" name="file" size = "40">

<input type = "hidden" name="confirmation" value="yes">

<input type="button" value = "Close the window" name=”close”

onclick='window.close()'>

<input type="submit" value="Send">

<input type="reset">

 </form>

</body>

The code above exemplifies the use of all input types on one form and is

displayed by Internet Explorer as in Figure 5.29. By default, the width of all controls

displaying a textbox (text, password or file) is about 20 characters long. The width

may be changed by either setting the size attribute to a value approximating the

number of characters that should fit into the control (the length of the email input is set

to display about 40 characters) or by specifying the width in pixels using the style

attribute (the middlename input width is set to 25 pixels). The maximum number of

characters that the visitor may write into a text input can be specified using the

251

maxlength attribute: the middlename text input will allow the visitor to enter a

maximum of 2 characters.

Some controls have implicit labels given by the value of the value attribute: the

text written on the button input is "Close the window" and the text written on the

submit input is "Send". The label HTML element may be used to attach

information to controls that do not have implicit labels associated (like text, radio or

checkbox). Each label HTML element is associated explicitly or implicitly to exactly

one control on the form. The explicit association is made by using for attribute in the

<label> opening tag. The value of this attribute must be the same as the value of the

id attribute defined in the opening tag of the associated control. The email text input

and img image input have explicit labels attached. The implicit association is made

by inserting the associated control between <label> and </label> tags. Only one

control may be inserted inside a label HTML element. The notifications checkbox

input with value equal to offers has an implicit label attached. Labels may be

rendered by internet browsers in different ways: for instance, the read by speech

synthesizers may identify controls through their associated labels.

The fieldset HTML element may be used for grouping visually the

controls that belong to the same category. The grouped formed by all the controls

defined between <fieldset> opening tag and </fieldset> closing tag will be

surrounded by a line: in the example above, all the radio input controls are defined

inside a fieldset HTML element so that the visitor easily identifies the group they

form. The content of the legend HTML element inside the fieldset represents the

description of the entire group and is displayed on the line that surrounds it.

Both radio and checkbox input controls may be selected or checked by

default if the checked attribute with the value set to checked is inserted in their

opening tag. The notifications checkbox input control with the value email is

checked by default and may be unchecked by the visitor. Checking either or both

of the other two checkbox controls will not affect its state. The visitor may check

or uncheck all the checkbox controls. The income radio input control with the

value low is also selected by default. It will be automatically deselected when the

visitor selects another income radio input control. There is now way the visitor

can select two income radio input controls at once or deselect all of them.

The image input control will insert into the webpage the image from the file

specified in the src attribute. This image will behave by default like a submit

button and will submit the coordinates of the position inside the button where the

mouse pointer was clicked: distances, in pixels, from the left margin (x) and from

the upper margin (y) of the button. The value of the alt attribute is shown as a

small popup when the mouse pointer is over the button.

252

The file input control allows the visitor to visually choose a file from the

computer by clicking the Browser button. The hidden input control is not shown

to the visitor so its value cannot be changed. Still, its name and default value are

submitted to the processing agent. The button input control has two attributes

(value and name) and one event (onclick) defined in the opening tag. The value

attribute sets the text displayed on the button and the onclick attribute sets the

action to be done when the visitor clicks on the button (closing the current

window).

When the visitor submits a form (by clicking the submit button) the browser

processes it in four steps:

1. identifies the successful controls;

2. builds a form data set;

3. encodes the form data set;

4. submits the encoded form data set.

A successful control is a control valid for submission which has a current

value associated with its name as part of the form data set. Thus the name attribute

is required for all types of controls except submit and reset input controls or

buttons. Also, if a control does not have a current value when the form is

submitted, it might not be treated as a successful control. From the example in

Figure 5.29, the following controls are successful:

- all text input controls and the password input control with the values

written by the visitor;

Figure 5.29 - Input controls on HTML forms

253

- the first radio input control with the value unspecified;

- the first and the third checkbox input controls with the values email and

offers;

- the file input control with the value D:\CV.docx;

- the confirmation hidden input control;

- the img input control which was clicked at coordinates: x=106 and y = 21.

A form data set is a sequence of

controlname=currentvalue pairs

belonging to all successful controls.

This is encoded according to the content

type specified in the enctype attribute

inside the <form> opening tag. The

text/plain value of this attribute forces

the browser to submit the names and

values of the successful controls in clear

text, without any encryption.

The method attribute of the

form HTML element specifies the

HTTP method used to send the form

to the processing agent. This attribute

may take two values: get and post. When the get value is set and the action is a

http URI, the browser takes the value of the action attribute, appends a ? to it and

then appends the encoded form data set. The post value of the method attribute

forces the browser to include the form data set in the body of the form before

sending it to the processing agent specified in the action attribute.

In the example from Figure 5.29, the value of the action attribute is

mailto:dragos.vespan@ie.ase.ro which means that the processing agent is the

default e-mail program. This will send the form data set in plain text to the

specified e-mail address, using the default e-mail account. Internet Explorer

browser warns the visitor about the e-mail being sent. The e-mail that the recipient

receives when the form is submitted is shown in Figure 5.30.

<body>

<form action="http://info.ase.ro/prog/analyze" method="get"

enctype="multipart/form-data">

<label> Select your education:

<select name="education">

<option selected value="Unspecified">Not specified </option>

<option value="highschool">A-level degree</option>

Figure 5.30 - E-mail sent using form

submission

254

<option value="university">Bachelor degree</option>

<option value="master">Master degree</option>

<option value="doctorate" label="PhD">PhD degree</option>

</select>

</label> <hr>

<label> Select your computer knowledge:

<select name="languages" multiple size="4">

<option selected label="none" value="none">None</option>

<optgroup label="Computer programming">

<option value="VB">Visual Basic</option>

<option value="VC">Visual C++</option>

<option value="VJ">Visual Java</option>

</optgroup>

<optgroup label="Web Design">

<option value="ExW"> Expression Web </option>

<option value="DW"> DreamWeaver </option>

<option value="ASP">ASP</option>

<option value="PHP">PHP</option>

</optgroup>

</select>

</label> <hr>

<label>

Enter a brief description:

<textarea name="description" rows="3" cols = "50">

</textarea>

</label> <hr>

<button type="button" onclick="window.close()"> Close <hr> this

form </button>

<button type="submit"> </button>

<button type="reset"> Reset this form </button>

</form>

</body>

The code above exemplifies the use of select, optgroup, option, textarea

and button controls and the Figure 5.31shows the way it is rendered by Internet

Explorer.

The select control allows the visitor to select one or more elements from a

list of available items. Each one of these elements is represented by an option

HTML element. The name of each element is given by the content of the

corresponding option HTML element. Still, if the label attribute is specified in its

opening tag, then the value of this attribute will be displayed instead of the content.

255

It is mandatory for a select control to include at least one option element.

Also, the name attribute must be present inside the opening tag of the select

control, in order to be submitted along with the value of the selected option.

The value of the size attribute sets the number of visible rows displayed by

the select control. If the size attribute is not specified then, by default, the control is

shown as a dropdown list. If the value of the size attribute is greater than one then

the select control is displayed as a scrolling list box.

The first select control

in the code above has only the

name attribute specified inside

its opening tag. Thus, it will be

displayed as a dropdown list

with five elements from which

the visitor can select only one.

An option element may

be preselected if it includes the

selected attribute (with no

value) inside its opening tag.

This way, if the visitor does

not interact with the select

control that contains it then the

preselected element will be submitted by default. It is wrong to have multiple items

preselected for a select control that does not include the multiple attribute.

The first option element of the first select control is preselected and, because

the control is not a multiple selection one, it will be automatically deselected when

the visitor chooses another option element. In Figure 5.31 the PhD option is

selected so the pair education:doctorate will be submitted to the processing agent.

Note that for this option HTML element, the value of its label attribute is displayed

instead of its content.

If the multiple attribute (with no values) is present in the opening tag of a

select control, then the visitor may choose several options from the list at once, by

holding down the Ctrl key and clicking the right options with the mouse. More,

such a select control may contain more preselected options which will be

deselected if the visitor clicks on them.

If there are too many options to choose from the list, they can be grouped by

categories so that the visitor visualizes and identifies them better. The optgroup

HTML element is used for grouping logically the options of a select control. The

value of the label attribute specified in the optgroup element’s opening tag

Figure 5.31 - Other controls used in HTML forms

256

specifies the category to which the contained options belong. Also, an optgroup

element cannot be selected.

The second select control from the code above contains two groups, one with

three options and one with four options. Also, it contains another separate option with

none value which is preselected. On the webpage in Figure 5.31 three options were

selected: VB, ExW and ASP. This way, three pairs were also generated in order to be

submitted: languages=VB&languages=ExW&languages=ASP, Figure 5.32. If no

option element is selected inside the select control then the control is not succesfull

and neither the control name nor its values will be submitted to the processing agent.

If there is more text that the visitor should fill in, like his own description in a

few phrases for instance, then the textarea control may be used. This control allows

the user to enter multiple lines of text at once, and to visualize all the written text by

using the attached scroll bars. The attributes that can be set within its opening tag are

name, rows and cols. The name attribute along with the content of the textarea

control inserted by the visitor are submitted to the processing agent. The rows

attribute specifies the number of rows visible in the control. If more rows of text are

written by the visitor, then the browser will attach vertical scroll bars to the control.

The cols attribute specifies the width in average character widths. The browser wraps

the text of the long lines avoiding this way the use of horizontal scroll bars. The

textarea control from the example in Figure 5.31has a width of 50 characters and

displays three lines of text at once.

Instead of the button input control, the button control may be used for

placing buttons on the form. The functionality is the same and the difference

consists in that the button control provides richer rendering possibilities due to the

fact that it accepts content.

Both value and name attributes may miss from the opening <button> tag.

If the name attribute is present then the value of the button will be submitted to the

processing agent and, if there is no value attribute specified, then the content of

the button control will be submitted instead. The type attribute is mandatory and

may take one of the three values: button, submit and reset, with the same

functionalities as the input button controls.

Almost any type of HTML content may be inserted between <button>

opening tag and </button> closing tag. The first button element in Figure

5.31contains text separated by a horizontal rule. The content of the second button

element is an image on which the visitor has to click in order to submit the form.

The third button control contains bold text.

Figure 5.32 - URI submitted by the form

257

The value of action attribute of the form control presented in Figure 5.31

represents the application called analyze which is found in the prog folder on

http://info.ase.ro. The method attribute has the get value which will make the

browser append ? after to the URI specified by the value of the action attribute

followed by the form data set. This URI will be sent to the analyze application,

responsible for processing the form data set. The form data set contains a sequence of

control_name:value pairs for all successful controls in the form. If a control has

more values selected, then its name will make a pair with each selected value inside the

form data set. When the multipart/form-data encoding type is used, the

control_name:value pairs inside the form data set are separated by & and the spaces

contained in the values of the controls are replaced by +, like in Figure 5.32.

5.7 Differences between HTML and XHTML

XHTML stands for Extensible HyperText Markup Language and represents a

stricter and cleaner version of HTML. XHTML is HTML defined as an XML

application and represents a W3C recommendation, being supported by all the

browsers.

XHTML represents a combination between XML, designed for describing data,

and HTML, designed for displaying data. This way, an XHTML document is in fact a

HTML document where everything is marked up with respect to strict conditions.

The main differences between HTML and XHTML are:

1. in HTML elements must be closed strictly in the reverse order they were

opened. Although the syntax

<i>bold and italic text </i>

is allowed in HTML, it is wrong in XHTML and the correct version is

<i>bold and italic text </i>.

The HTML sequence

 bold <i> and italic and only italic

will be rewritten in XHTML as

bold <i> and italic </i><i> and only italic </i>.

Although HTML allows non empty elements like <p> to miss the ending tag.

In XHTML this is not possible.

2. Empty elements must be closed in XHTML by using / in their opening tag:

A trailing space should be added before /> .

3. XHTML does not allow non-empty elements to be defined as empty by

inserting / in their opening tag: <p /> is wrong and <p></p> is correct.

http://info.ase.ro/

258

4. In XHTML all element names and attributes must be written with lowercase.

Although <HTML> and are allowed in HTML, in

XHTML they have to be written as <html> and .

5. In XHTML, all attributes must be written between single or double quotes.

Although

<button type=button onclick=window.close()>

is allowed in HTML 4.01. In XHTML the statement must be rewritten as

<button type="button" onclick="window.close()">

6. In XHMTL, all attributes must be represented as

attribute_name="attribute_value" pairs. Although

<option selected value="Unspecified">

is correct in HTML, in XHTML it has to be rewritten as

<option selected=”selected” value="Unspecified">

7. The HTML name attribute for the elements a, applet, form, frame, iframe,

img and map was replaced by the id attribute in XHTML.

8. The following nesting prohibitions are defined in XHTML:

o a must not contain other a elements;

o pre must not contain img, object, big, small, sub or sup elements;

o button must not contain input, select, textarea, label, button, form,

fieldset, iframe or isindex elements;

o label must not contain other label elements;

o form must not contain other form elements.

9. When specifying the language of an element in XHTML, both lang and

xml:lang attributes must be used, like this:

<div lang=”en” xml:lang=”en”> Hello! </div>

10. The display of the ampersand character & must always be done by using the

& character entity. For instance, when the a element is used with href

attribute referring to a CGI script with parameters, instead of

http://info.ase.ro/prog/analyze?education=doctorat&languages=VB

which is valid in HTML, the string should be written as

http://info.ase.ro/prog/analyze?education=doctorat&languages=VB

11. All XHMTL documents must have a DOCTYPE declaration and html, head, title

and body elements must be present.

259

Contents

5 DEFINING AND STRUCTURING WEB PAGES USING HTML 201

5.1 HTML – An introduction ... 201

5.1.1 The Structure of a HTML Page ... 204

5.1.2 The HTML Page Head Tag ... 206

5.2 Text emphasizing elements .. 207

5.2.1 Headings .. 207

5.2.2 Spaces .. 209

5.2.3 Paragraphs ... 209

5.2.4 Preformatted Text .. 211

5.2.5 Character Entities .. 211

5.2.6 Text Formatting ... 212

5.2.7 Horizontal Rule ... 213

5.2.8 Lists ... 215

5.3 Hyperlinks and pictures ... 217

5.3.1 Hyperlinks ... 217

5.3.2 Images ... 220

5.4 HTML elements for defining layout of web pages .. 223

5.4.1 Tables .. 223

5.4.2 Horizontal Rule ... 232

5.4.3 Frames ... 235

5.4.4 Colors .. 238

5.5 Styles and CSS ... 239

260

5.6 Forms in HTML ... 248

5.7 Differences between HTML and XHTML .. 257

6 VBScript

6.1 Introduction

VBScript is a subset of VBA and it allows usage of most familiar

functions of these one. Microsoft says that VBScript is integrated with World Wide

Web browsers (more exactly with Internet Explorer versions of Microsoft) and

designed to work with ActiveX controls and other objects embedded in active

HTML documents. VBScript can be used as Web scripting client in Microsoft

Internet Explorer and as Web server scripting in Microsoft Internet Information

Services. Web server scripting is accessible at Windows command prompt by one

of the commands CScript.exe (DOS interpreter) or by WScript.exe (windows

interpreter). In the following paragraphs the Web scripting client introduced.

In an HTML page the code modules are supported through the

<SCRIPT></SCRIPT> tag. Each script section forms an independent code module

that may have its own variables, functions and subroutines (they are similarly to the

standard .bas modules found in Visual Basic).

The forms are created using the <FORM></FORM> tag (not the form

control in Visual Basic) and they are not visible as separate windows in the

application. The forms are ways to group controls together for the purpose of

addressing their properties and methods in code or to submit data to back-end

process.

6.2 Using and placing VBScripts in a HTML page

The script blocks can be placed and used anywhere within a HTML page

but we can obtain some benefits when placing in the heading section or body

section (as block script or inline script) of an HTML page. In the following

paragraphs are introduced some examples of using (and placing) VBScripts in a

HTML page.

6.2.1 VBScript in the body of the HTML file

VBScript in the body of the HTML page will be executed when the page

loads. Generally, the scripts in the body, will generate the content of the page.

Example:
<html>
 <head>
 <title>
 Page containing VBScript
 </title>

 260

 </head>
 <body>
 <script TYPE="text/vbscript" LANGUAGE="VBScript">
 document.write("This text is displayed by a VBScript!")
 </script>
 </body>
</html>

Comments:

The tag <script> have the attribute TYPE, that specifies the script type

(VBScript in our case). The attribute LANGUAGE indicates the scripting

language.

This script composed by a single command that displays inside the page

the text: "This text is displayed by a VBScript!".
If the script is included in a comment tag (<!--) then the browsers that do

not „know” (interpret) VBScript will not display (it skips over) in the page the

script text (script source), as shown in the folowing sample:

<!--
document.write("<i>"+"This text is displayed by a
VBScript!"+"<\/i>")
//-->

The browsers that know VBScript will process the script, even this

included in a comment line/block.

The string „//”, comment in VBScript, tell to the browser do not process

the line „-->”. We can not use the sintax „//<!--”, for the comment beginning

tag, because a browser that do not interpret VBScript will display that string

„//”.

6.2.2 VBScript in heading

If we want be sure that the script executes before displaying any element in

the page we can include this in the heading part of the HTML page (file). The

VBScript in the head section will be executed when called, or when an event is

triggered.

Example:
<html>
 <head>
 <title>
 Page with VBScript
 </title>
 <script type="text/vbscript">
 document.write("This text is displayed by a VBScript!")
 </script>
 </head>
 <body>

 261

 <P> This text must appear in the page after the execution of the
VBScript.
 </body>
</html>

The number of scripts placed in the head section and in the body of a

HTML page is unlimited.

6.2.3 Inline VBScript

 The inline scripting code can be associated to forms objects to respond to

the events of that objects.

 Example:
<HTML>
<HEAD>
<TITLE>Test Button Events</TITLE>
</HEAD>
<BODY>
<FORM NAME="Form1">
 <INPUT TYPE="button" NAME="Button1" VALUE="Click">
 <SCRIPT FOR="Button1" EVENT="onClick" LANGUAGE="VBScript">
 ' replace the message that follows with the code you want
 ' be executed when clicking the button
 MsgBox "Button Pressed!"
 </SCRIPT>
</FORM>
</BODY>
</HTML>

In this example the button object called „Button1” has an associated script

for the click event (EVENT="onClick"). When the user presses the button the

script executed.

6.3 Variables and Constants

6.3.1 Variables

Variables are named storage locations that can contain data that can be

modified during script running. The variables are the memory cells used for storing

forms input data and/or its computational results. The only data type accepted is as

the Variant in VB6, which can contain any kind of data. Table 6.1 shows the data

subtypes accepted. The declaration of variables is realized by using the Dim or

ReDim statement.

The naming of variables in VBScript uses the rules:

1. An identifier must begin with a letter;

2. Can’t be longer than 255 characters;

3. Can’t contain embedded period or embedded type declaration character;

 262

4. Must be unique in same scope (the range from which the variable can be

referenced).

The number of variables per procedure is limited to 127 (an array counts as

one variable) and each script is limited do not have more than 127 module-level

variables. The length of the time a variable exists is its lifetime. A script level

variable’s lifetime begins when its declaration statement is encountered as

procedure begins, and ends when the procedure concludes.

The array elements can have how many dimensions required, each

dimension defined by separating from previous with a comma, as in this example

Dim MatrixAlpha(10,20,30) that defines a three dimensional array. The addresses

of elements (the index) start from 0 for every dimension. In the previous example

the number of elements of the array called MatrixAlpha is 11x21x31.

Examples:
Dim Pi,CompanyName,EndDate
rem Assigning values
Pi=3.14
CompanyName=”Media Advertising, Inc.”
EndDate=#12-31-2007#

Table 6.1. Possible Data Subtypes for a Variant

Subtype Meaning

Empty Variant is un-initialized. Value is either 0 for numeric variables or
a zero-length string ("") for string variables.

Null Variant intentionally contains no valid data.

Boolean Contains either True or False.

Byte Contains an integer in the range 0 to 255.

Integer Contains an integer in the range -32,768 to 32,767.

Single Contains an integer in the range -2,147,483,648 to
2,147,483,647.

Long Contains a single-precision, floating-point number in the range -
3.402823E38 to -1.401298E-45 for negative values; 1.401298E-
45 to 3.402823E38 for positive values.

Double Contains a double-precision, floating-point number in the range -
1.79769313486232E308 to -4.94065645841247E-324 for
negative values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

String Contains a variable-length string that can be up to approximately

 263

2 billion characters in length.

Date
(Time)

Contains a number that represents a date between January 1,
100 to December 31, 9999.

Object Contains an object.

Error Contains an error number.

Example:
<SCRIPT TYPE="text/vbscript">
<!--
rem Defines two variant variables
Dim DegreesFahrenheit, DegreesCelsius
Rem Defines an array A of 100 elements and an array B of an unspecified
dimension (used for dynamic resizing)
Dim A(100), B()
Rem Dynamically resizes the array B
ReDim B(50)
-->
</SCRIPT>

Example:

This example shows how you

can reference and use variables

defined in forms (as text box

objects) and assign a value. The

procedure cleans the text boxes

in the form when the web page

containing the form is loaded.

<HTML>
<BODY bgColor=white>
<TABLE>
<TR>
<TD valign=top> </TD>
<TD valign=top>
<TABLE> <tr> <td colspan=2></td> </tr>
<TR> <TD>Name :</TD><TD><INPUT id=text1 name=text1
 style="WIDTH: 248px; HEIGHT: 22px" size=32></TD>
</TR>
<TR>
 <TD>Address :</TD><TD><INPUT id=text2 name=text2
 style="WIDTH: 248px; HEIGHT: 22px" size=32></TD>
</TR>
<TR>

The form and his internal elements

 264

 <TD>County (*):</TD><TD><INPUT id=text3 name=text3
 style="WIDTH: 43px; HEIGHT: 22px"></TD>
</TR>
<TR>
 <TD>Postal Code (*):</TD><TD><INPUT id=text4 name=text4 width =
 "10"></TD>
</TR>
<TR>
 <TD colSpan=2><FONT
 style="BACKGROUND-COLOR: red"><FONT
 style="BACKGROUND-COLOR: #ffffff" color=crimson size=2><FONT
 style="BACKGROUND-COLOR: white">*These fields are
 required </TD>
</TR>
<TR>
 <TD colSpan=2><INPUT id=button1 name=button1 type=button value=" Send
Data "
 LANGUAGE=vbscript onclick="return button1_onclick()"></TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>
</BODY>
<SCRIPT LANGUAGE=VBScript>
rem When the page is loaded, clear the text boxes
sub Window_onLoad
 rem Reset edit boxes
 text1.value = ""
 text2.value = ""
 text3.value = ""
 text4.value = ""
end sub

</SCRIPT>
<SCRIPT LANGUAGE=JScript>
</SCRIPT>

</HTML>

Arrays. The array is a data structure in which we store data items of the same type.

The massive (or array) is used for representing vectors and matrix in the internal

memory of computer. An array can be thought of as a simple variable with an index,

or subscript, added. We can access each individual item (called array element) stored

in the array. If A is an array of n elements, we can write A(expr) , where expr is an

integral expression, to access an element of the array. We call expr subscript, or index,

of A. The expression A(i) can be made to refer to any element in the array by

assignment of an appropriate value to the subscript i, that mean a value that range

 265

from 1 to n (or, depending on the programming language used and declaration of the

array, from 0 to n-1). The elements of the massive are called indexed variables,

because the addressing of an element is depending on its position into the array. This

position is represented by means of an index value for every element.

 Some programming languages admit multiple variables massive. In the

internal memory, massive are usually represented in a linear form, in a contiguous

zone which is divided into other zones of the same length for every element.

 The address of an element is obtained with the beginning address [A] and the

displacement [d] of the considered element. The displacement can be obtained

knowing the length of an element and the order of the considered element into the

massive. A massive has a finite number of elements, all of them having the same type,

length and attributes. In almost programming languages a massive is an internal

structure, with finite cardinality and homogeneous data, having a proper linear and

statistic structure law.

 In economy, there are many problems that need to be solved by using the

processing of data series, dynamic series, series of intervals, results of the recording of

some statistic studies in phenomenon's evolution. Many other types of problems may

be solved by data which are represented as vectors and matrices.

 Generally, all the elements in an array have the same data type but, in

VBScript, since the data type is Variant the individual elements may contain different

kinds of data (object, string, numbers, and so on). In VBScript there are two types of

arrays: fixed-size array which always remains the same size, and dynamic array

whose size can change at run time.

Fixed-size arrays. An array is declared in

VBScript with the same Dim sentence:

 Dim arrayname(n)

where:

- arrayname is the desired name

for the array;

- n is the maximum number of

elements for the array. The index

takes values from 0 to n-1 (that

means n elements);

 A multidimensional array is declared

by specifying many dimensions, for example

Dim M(9,6) defines a two dimensional 10-by-

7 array of variant.

 To retrieving elements and assigning

values we must specify each index value. For

example, M(1,1) designates the element from

line 1, column 1. It is possible to

define multidimensional arrays by defining

the values for each desired dimension (with

The output for array operations

example

 266

one subscript per dimension).

 The following code sequence illustrates the way to use arrays:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="text/html; charset=windows-1252" http-equiv="Content-Type" />
<title>VBScript Arrays Example </title>

<script language="vbscript">
 function ArrayOperations()
 Dim i, j, xval ' The index variables
 Dim arrayA(3) 'An array of 4 integers
 Dim arrayS(3) 'An array of 4 strings
 Dim arrayV(2,2)'Declares an array of two elements
 xval=" nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;"

 For i = 0 To 3
 arrayA(i) = 100 + i 'Assigning a value to element i
 'document.write(arrayA(i) & "
")
 Next

 Rem Printing the heading of the table
 Document.write("Array A Content:
")
 Document.write("-------------------------------
")
 Document.write("Element Value
")
 Document.write("-------------------------------
")

 Rem Printing the content of arrayA elements
 For j = 0 To 3
 Document.write("Index:" & j & " " & arrayA(j) & "
")
 Next

 For i = 0 To 3
 xval=i+1
 arrayS(i) = "This is Element " & xval
 Rem Assigning a value to element i
 Next

 Document.write("

Array S Content:
")
 Document.write("-------------------------------
")
 Document.write("Element Value
")
 Document.write("-------------------------------
")

 For i = 0 To 3
 xval=cstr(i + 1) & " " & arrayS(i) & "
"
 Document.write(xval)
 Next

 267

 Document.write("

Array V Content:
")
 Document.write("-------------------------------
")
 arrayV(1,2) = arrayA(0)
 arrayV(2,1) = arrayS(2)
 Document.write("Element 0 from array A:" & arrayV(1,2) & "
")
 Document.write("Element 3 from array S:" & arrayV(2,1) & "
")
 end function

</script>
</head>

<body>
<input name="Button1" type="button" value="Show Arrays"
onclick="ArrayOperations()"/>
</body>

</html>

 The command button labeled Show Arrays runs, when clicked, the code

sequence defined inside of the <script> tag and produces the output shown in figure

x.y.

Dynamic Arrays. A dynamic array can be resized at any time and is usual when we

don’t know exactly the number of elements (for example, the number of documents

opened in a session).

 To create a dynamic array follow the rules:

1
st
. Declare the array with ReDim statement, for example ReDim

DynamicArray(5)

2
nd

. Allocate the extended number of elements with a ReDim statement, for

example ReDim DynamicArray(8), that creates a new array of 9 elements.

The ReDim statement can appear as many time as necessary. Each time we

execute the ReDim statement all values already stored in the array are lost.

We can preserve the existing content by using the Preserve keyword ReDim

DynamicArray(8), that adds the elements 6, 7, and 8 to the existing array and

preserve the existing ones.

The following example shows the way to use dynamic arrays and preserve the

content:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="text/html; charset=windows-1252" http-equiv="Content-Type" />
<title>VBScript Arrays Example </title>
<script language="vbscript">

 268

 function DynamicArrayOperations()
 ReDim DynamicArray(5)
 Dim i ' the index name

 document.write("Dynamic Array
Content:
")
 document.write("-------------------------------------
-
")
 document.write("Element
Value
")
 document.write("-------------------------------------
-
")
 For i = 1 To 5
 DynamicArray(i) = "This is cell " & i
 document.write(i & " " & DynamicArray(i)
& "
")
 Next
 ReDim Preserve DynamicArray(8)
 document.write("

Dynamic Array
Preserved Content:
")
 document.write("-------------------------------------
-
")
 document.write("Element
Value
")
 document.write("-------------------------------------
-
")
 For i = 1 To 5
 document.write(i & " " & DynamicArray(i)
& "
")
 Next
 document.write("-------------------------------------
-
")
 document.write("This is added content
")
 document.write("--------------------------------------
")
 For i = 6 To 8
 DynamicArray(i) = "This content added in cell " & i
 document.write(i & " " & DynamicArray(i) & "
")
 Next

 end function
</script>
</head>
<body>
<input name="Button1" type="button" value="Show Arrays"
onclick="DynamicArrayOperations()"/>
</body>
</html>

The output for dynamic array

operations example

 269

 The command button labeled Show Arrays runs, when clicked, the code

sequence defined inside of the <script> tag and produces the output shown in figure

x.y.

6.3.2 Constants

Constants can appear as such anywhere as literals, intrinsic constants

available in the VBScript programming environment or in other Windows

applications, or as declarations in the declarative part of the program. Literals can

be used only once in the code; if you want use many times you must declare them

each time. The constants are like a cross between literals and variables: they have a

single never-changeable value just as literals but must be declared and assigned

with the value just as variables.

The user can define his constants by following the procedure:

1) Define the memory variable for constant with the Const keyword

(instead of Dim);

2) Assign the value, as literal value, to the variable;

3) Use the name of the variable anywhere (in his scope) is required the

literal value assigned to it.

Examples:

Constant Type
"Welcome to the information
century!"
$25,000.00
3.14
-123
0.123e+3
“11/12/2009”

string
currency
positive real number
negative integer number
number written in the scientific notation
date

Constants can be defined as a declaration statement by using the syntax:

Const constantName=expression[,…]

where:

- constantName is an user identifier defined by following the naming rules;

- expression an expression evaluated to an agreed data type whose

evaluation is considered the default value for the constant.

Examples:

 Const Pi = 3.14159

 Const Vat = 0.19, Star = “”

A declared constant is a named storage location that contains data that can

not be modified during the program execution. The most used constants are

 270

number constants and string constants. A string constant is sequences from 0 to

1024 characters enclosed in quotes.

6.4 Assignments and expressions

Assignments

The general syntax for assignment is:

variable = expression

The interpretation of this is: the variable before the assignment operator is

assigned a value of the expression after it, and in the process, the previous value of

variable is destroyed.

 An assignment statement stores a literal value or a computational result in

a variable and is used to perform most arithmetic operation in a program.

Expressions

An expression can be an expression on character string, a logical

expression or arithmetic expression. It can be a variable, a constant, a literal, or a

combination of these connected by appropriate operators (table 6.2).

1. An expression on character string can be built (in VB but not only) using:

- the concatenation operator: &

- intrinsic functions for extracting substrings from a string variable or

string constant such as:

 Right(string,number_of_characters) - extracting substring from

the end

 Left(string,number_of_characters) - extracting substring

from the beginning

- functions that manipulate strings:

 Cstr(expression) – convert the expression in a character string;

 Lcase(string_expression) – convert the string in lower case;

 Ltrim(string), Rtrim(string), Trim(string) – eliminates the spaces

(trailing) from left (leading blanks), right and, respectively left-

right;

 Str(number) – converts number in string;

 Ucase(string) – converts string to uppercase.

2. A logical expression can be:

 • simple, with the general syntax:

 <variable>[<relation_operator><variable>]

 or

 271

 <variable>[<relation_operator><constant>]

 <relation_operator>::=<<=>>==<>

 • complex, with the general syntax:

 e1 Eqv e2 - equivalence;

 e1 Imp e2 - logical implication;

 e1 Xor e2 - exclusive or;

 <logical_expression1><logical_operator><logical_expression2>

 where the logical_operator can be:

 And, Or as binary operators (connectives); Not as unary operator.

The precedence of evaluation of logical operators is Not, And, Or, Xor, Eqv, Imp

(table 6.2).

 The logical functions works as explained in chapter two in the book

“Informatics: Computer Hardware and Programming in Visual Basic”

[AvDg03]. Each one has an associated truth table that take carry of the two states

True or False and, in some programming environments, a state called Empty (or

Null) to distinguish between False an non value.

3. An arithmetic expression uses the syntax:

 <operand1><arithmetic_operator><operand2>

where:

- <operand1>,<operand2> can be numeric variables, constants or arithmetic

expressions (or calls to functions that returns numeric values)

- arithmetic_operator (binary operators) is one of those shown in table 6.2, column

Arithmetic.

Table 6.2. VBScript Operators

Arithmetic Comparison Logical

Description Symbol Description Symbol Description Symbol

Exponentiation ^ Equality = Negation Not

Unary negation - Inequality <> Conjunctio
n

And

Multiplication * Less than < Disjunction Or

Division / Greater than > Exclusion Xor

Integer division \ Less than or
equal to

<= Equivalenc
e

Eqv

Modulo
arithmetic

Mod Greater than
or equal to

>= Implication Imp

Addition + Object Is

 272

equivalence

Subtraction -

String
concatenation

&

6.5 Procedures and functions

The procedures are small logical components in which you can break

(split) a program for a specific task. They are very useful for condensing repeated

or shared tasks (such as calculations frequently used). The procedures are called to

do their job from other procedures. Generally a procedure can take arguments,

perform a series of statements, and change the value of its arguments.

 The major benefits of programming with procedures are:

- procedures allow you to break your programs into discrete logical units, each of

each you can debug more easily than an entire program without procedures;

- procedures used in one program can act as building blocks for other programs,

usually with little or no modification.

 The general form of a VBScript procedure/function can be described as

follows:
 Procedure_type Procedure_name ([Argument_list]) the procedure

heading
 [declaration_statements] procedure body

 [executive_statements]
End Procedure_type

The Procedure_type defines if function or procedure:

 Procedure_type::=Sub Function

The user identifier Procedure_name is declared to be the name of a procedure or

function.

The argument_list declares the values that are passed in from a calling procedure.

 A procedure can have two parts:

 a declaration part that contains reservations of memory cells that are

needed to hold data and program results and what kind of information

will be stored in each memory cell.

 an executive part that contains statement (derived from the algorithm

you want to communicate to the computer) that are translated into

machine language and later on executed.

Any identifier declared in the declaration part is by default usable only

during the execution of the procedure and can be referenced only within the

procedure.

 273

The procedure executive_statements describes the data manipulation performed

when the procedure is activated through a procedure call statement. The procedure

call statement initiates the execution of a procedure.

After procedure_name has finished executing, the program statement that

follows the procedure call will be executed. The information passed between a

procedure and the program that calls it are called procedure parameters.

 The values passed into a procedure by the calling program are called

procedure inputs and the results returned to the calling program are called

procedure outputs.

 There are two types of procedures used in VBScript:

1) Sub procedures do not return a value;

2) Function procedures return a value; you return a value by assigning it to the

function name itself: Function_name=expression for the return.

 A call to a Sub procedure is a stand-alone statement. A Sub procedure can

be invoked by a Call statement:

Call Procedure_name (argument_list) – if specified the argument list must be

enclosed in parenthesis;

or

Procedure_name argument_list

 A function procedure can return a value to the caller. A call to a function

procedure can be realized using the syntax:

Variable_name=Function_name(arguments) or Call Function_name(arguments) or

Function_name arguments

There are two differences between Sub and Function procedures:

 generally, you call a function by including the function procedure name

and arguments on the right side of a larger statement or expression

(Variablename=Functionname());

 the result value is returned to the caller by intermediate of an assignment

statement to the name of the function.

When we call functions or procedures without arguments we must include an

empty set of parenthesis () after the procedure/function name if the function is in

the right part of an assignment or in an expression; if the call is a stand-alone

sentence the parenthesis not required (and not allowed!).

6.6 Decisional (conditional/alternative) statements

The decision structure is used for choosing an alternative (an operation or

block of operations) from two possible alternatives. Algorithm steps that select

from a choice of actions are called decision steps.

 274

If … Then … Else. The first syntax for alternative structure can be expressed as:

If condition Then

operation1

Else

operation2

End If
 The decision block can be expressed in a natural language as:

- evaluate the expression that defines the logical condition <condition>;

- If the result of evaluation is True

Then execute operation1 (a block of sentences)

Else execute operation2 (a block of sentences);

- continue the execution with the next step in the flow.

If the condition is True Then the group between Then and Else will be

executed Else the group of sentences between Else and End If will be executed.

 The logical condition <condition> is a logical expression that will be

evaluated either to True or either to False. The logical conditions can be simple or

complex logical conditions.

A simple logical condition has the general syntax:

<variable> [<relation_operator ><variable>]

or

<variable> [<relation_operator ><constant>]

The relation_operator can be one of:
Relation Operator Interpretation

< Less than. Example: delta < 0

<= Less than or equal. Example: delta <= 0

> Greater than. Example: delta > 0

>= Greater than or equal. Example: delta >= 0

= Equal to. Example: a = 0

<> Not equal. Example: a<>0

If <variable> is number or Boolean then is possible to directly compare

with 0, respectively True and is not necessary to write the equal relation operator.

The simple logical conditions will be connected by the AND, OR, and

NOT logical operators to form complex conditions. The logical operators are

evaluated in the order NOT, AND, and OR. The change of the natural order of

evaluation can be done by using parenthesis in the same way for arithmetic

expressions. The precedence of operator evaluation in Boolean expressions (logical

expressions) is:
Not
^,*, /, div, mod, and
+, -, or
<, <=, =, <>, >=, >

If … Then. It is possible do not have a specific operation on the two branches, that

means situations as expressed in one of the syntaxes:

 275

a) Conditionally executing only one statement:

If condition Then statement

If the condition is True then the statement is executed

b) Conditionally executing a set of sentences (a block of):

If condition Then

 Sequence of statements1

End If

If the condition is true then the set of sentences placed between If and End If

are executed.

VBScript allows nesting if ... then ... else sentences (one if statement

inside another) to form complex decision structures (decisions with multiple

alternatives).

If … Then … ElseIf. The nested If allows deciding between several alternatives

and can be coded as a multiple-alternative decision. The syntax for that nested If is:

 If condition1

 Then

 sequence1

 ElseIf condition2 Then

 sequence2 . . .
 Else . . .
 End If

Can be added as many ElseIf clauses as needed to provide alternative

choices.

For the first time condition1 is tested. If the result is False condition2 and

so on until a True evaluated condition reached for each the associated sentence

block executed. After executing the reached block the control of processing is

passed to the next sentence after End if. If no condition evaluates to True then the

sentence block associated to the Else branch executes (if Else defined; if not

nothing executes).

Case of. Select case (or case of) executes one of several groups of statements

depending on the value of an expression (called selector). The case structure (and

statement) is especially used when selection is based on the value of a single

variable or a simple expression (called the case selector).

Select Case test_ expression

[Case expression_list1

[sentences1]]

[Case expression_list 2

 276

[sentences 2]] . . .
[Case Else

[sentences n]]

End Select

- each expression_listi is represented (or formed) by one or many comma separated

values (value list);

- in the block Select Case the case Else can appear only once and only as a last

case;

- if many cases fit to test_ expression then the first founded will be executed;

- each sentence block (sentencesi) can include zero, one or many sentences;

- the evaluation of the test expression is realized only once at the beginning of the

Select Case structure.

6.7 Repeating Structure

The repeating structure repeats a block of statements while a condition is

True or Until a condition becomes True. The repetition of steps in a program is

called a loop. The executions of such blocks follow the scenario (while): the

condition is evaluated and if the condition evaluates to:

• True then executes the block of statements;

• False then end the execution of the cycle (Loop) and continue the

execution of the program.

If for the first time the condition is False the sentence block is simply

skipped.

Conditional Loop with Condition Evaluated First

Syntax:

 Do [{While|Until}condition] beginning of cycle

 [statements]

 [Exit Do] body of the cycle

 [statements]

 Loop the end of sentence block

 The commands Loop and Exit Do are used to do:

- Loop – an unconditional jump (or branch) to the beginning of the associated

cycle (the evaluation of the condition);

- Exit Do – an unconditional ending of the cycle (a jump to the next sentence

defined under the loop that ends the body of the cycle).

Do…Until work as:

 1) Execute statements;

 2) Evaluate the condition Loop or Exit

 The block of commands between Do… and Loop will be executed

while/until the conditional expression “condition” evaluates to True.

 277

Example:

In this example we suppose that the user types numbers containing digits

between 0 (zero) and 9 (nine) as integer values. Because the function InputBox()

reads text values the mistakes (any other characters than digits and/or spaces

between digits) will produces a computation error message. To avoid that is

necessary to test whether the typed value is number or not.

<html>
<head>
<title>A function definition</title>
<script language=vbscript>
<!--
' Read_Number reads a value from keyboard and verifies
' if number or not (a process called validation). If the value is not a number
' signals that to the user who can choose between cancel or resume the
operation from typing
Function Read_Number(xNr, denNr)
 Dim Answer
 Do While True = True ' an infinite cycle
 xNr = InputBox("Type the value for " & denNr & ":", "Example")
 If (IsNumeric(Trim(xNr)))= False Then
 Answer = MsgBox("The Value for " & denNr & " must be Numerical !")
 If Answer = 2 Then ' Cancel Button pressed
 Read_Number = "*Cancel" ' The returned value to the caller is
*Cancel
 Exit Do ' Exit from the infinite cycle and return to the caller
 End If
 Else
 Read_Number = Trim(xNr) ' The returned value will be the number
 ' without extra spaces (to the left or right)
 Exit Do ' Exit from the infinite cycle and return to the caller
 End If
 Loop ' Restart the cycle
End Function
-->
</script>
</head>
<body>
<script language=vbscript>
<!--
dim numarcitit
document.write("Varsta:" & read_number(numarcitit,"Varsta "))
-->
</script>
</body>
</html>

 278

Conditional Loop with Condition Evaluated After

 In this case the operation is executed first and then the condition is evaluated:

Do

operations

Loop {While | Until} condition

 It can be described as:

- the operations are executed;

- the condition is evaluated;

- if the result of the evaluation of the condition is False then loop to execute

again the operations;

- if the evaluation of the condition is True then continue the execution of the

program (and close the loop).

Counted Loop. The statement executes a set of statements (operation1) within a

loop a specified number of times. A variable is used as counter to specify how

many times the statements inside the loop are executed.

Syntax:

For counter = iv To fv [Step s]

operations

[Exit For]

Next [counter]

Where:

- iv – is the initial value (start value – usually 0 or 1);

- fv – is the end value (the expected value – usually how many times);

- step – is the increasing (or decreasing) step for counter; if a value for Step not

specified the default is used (+1);

- the value for s can be positive or negative:

 if s is positive then must have the inequality iv<fv (otherwise the cycle

never executes);

 if s is negative then must have the inequality iv>=fv (otherwise the

cycle never executes);

- the cycle can be stopped unconditionally by intermediate of the sentence Exit For

The execution of For (VB) sentence follows the scenario:

1. The value iv is assigned to the variable counter;

2. The value of variable counter is compared with the end value fv (If

the value for step is negative is checked if counter<fv);

3. The operations are executed;

4. The value of variable counter is incremented with the value step (1 if

step not specified);

5. Repeat the steps from 2 to 5.

 279

The interpretation of the elements of For…Next sentence is:

what cycle number is how many times

For counter=start_value To end_value [Step increment_decrement]

 [statements]

 [Exit For] stop the cycle

 [statements]

 Next [counter]

Example:

We want to list a Fahrenheit to Celsius

correspondence table based on the computation

formula:

CELSIUS
o
 = (5/9)*(FAHRENHEIT

o
 - 32)

 The correspondence table will be displayed

(figure 6.1) starting with the minimal value (min) 0

(zero) and ending with the maximal value (max) of 300

degrees and the computation and display will be done

from 20 to 20 degrees (pas). We use, to solve this

problem, assignments instructions, the function MsgBox

to display the result and an instruction For that allow us

to repeat the execution of a group of sentences until a

specified condition satisfied. Following paragraphs

contains three solutions of that problem.

The script looks as:

<html>
<head>
<title>Fahrenheit-Celsius</title>
<script language=vbscript>
<!--
 Sub Coresp_Temp()
 Dim min, max, pas, fahrenheit, celsius, tabel
 ' Computation of the correspondence Co- Fo
 min = 0 ' Starting Value
 max = 300 ' Ending Value
 pas = 20 ' From 20 to 20 degrees
 fahrenheit=0
 celsius=0
 tabel=""
 tabel = "Fahrenheit | Celsius " & Chr(13) & Chr(10) &_
 string(36, "-") & Chr(13) & Chr(10)
 For fahrenheit = min To max Step pas

Figure 6.1 The output as a

message box

 280

 celsius = (5/9)*(fahrenheit-32)
 tabel = tabel & Right(Space(12) & round(fahrenheit,2),12) & " " _
 & Right(Space(12) & round(celsius,2),12) & Chr(13) &
Chr(10)
 Next
 MsgBox(tabel)
 End Sub
-->
</script>
</head>
<body>
<script language=vbscript>
<!--
 Call Coresp_Temp
-->
</script>
</body>
</html>

In the next version the script will display the output to a page that will be displayed

by the browser.
<html>
<head>
<title>Fahrenheit-Celsius</title>
<script language=vbscript>
<!--
 Sub Coresp_Temp()
 Dim min, max, pas, fahrenheit, celsius
 ' Computation of the correspondence Co- Fo
 min = 0 ' Starting Value
 max = 300 ' Ending Value
 pas = 20 ' From 20 to 20 degrees
 fahrenheit=0
 celsius=0
tabs=" &nbs
p; "
 document.write("Fahrenheit | Celsius " & "
")
 document.write(string(36, "-") & "
")
 For fahrenheit = min To max Step pas
 celsius = (5/9)*(fahrenheit-32)
 document.write(Right(Space(12) & round(fahrenheit,2),12) & tabs _
 & Right(Space(12) & round(celsius,2),12) & "
")
 Next
 End Sub
-->
</script>
</head>
<body>
<script language=vbscript>
<!--

 281

 Call Coresp_Temp
-->
</script>
</body>
</html>

The result displayed in a separate page in the shape of a table

defined with ASCII characters.

In the next version the script will display the output to a table inside of the

page that will replace a defined division using the getElementById() method and

innerHTML property.

<html>
<head>
<title>VBScript solution</title>
<script type="text/vbscript" language="vbscript">
<!--
 function Coresp_Temp()
 Dim min, max, pas, fahrenheit, celsius, report
 ' Computation of the correspondence Co- Fo
 min = minTemp.value
 max = maxTemp.value
 pas = stepTemp.value

The table generated row by row and cell by cell is stored in the

variable named “report” and substituted when ready to <div
id="replaceMe"></div> as shown in the following script:

 282

 fahrenheit=0
 celsius=0
 report="<table style='width: 50%; border-width: 2px; border-style:
solid;'><tr>" &_
 "<td style='border-style: solid; border-width:
2px;'>Fahrenheit</td>" &_
 "<td style='border-style: solid; border-width:
2px;'>Celsius</td></tr>"
 For fahrenheit = min To max Step pas
 celsius = (5/9)*(fahrenheit-32)
 report=report & "<tr'><td style='border-style: solid; border-width:
2px;'>"
 report=report & round(fahrenheit,2)
 report=report & "</td><td style='border-style: solid; border-width:
2px;'>"
 report=report & round(celsius,2)
 report=report & "</td></tr>"
 Next
 report=report & "</table>"
 document.getElementById("replaceMe").innerHTML=report
 End function
-->
</script>
</head>
<body>
<h1>VBScript based solution. </h1>

Type the values you want to compute the correspondence and then press
the Show button

<div style="border:1px solid #c0c0c0">
From:<INPUT type="text" id="minTemp" name="minTemp" size="4"
align="right" value="0" >
 To:<INPUT type="text" id="maxTemp"
name="maxTemp" size="5" align="right" value="300">
 Step:<INPUT type="text" id="stepTemp"
name="stepTemp" size="5" align="right" value="20">

<INPUT type="button" value="Show" ID="vbcompdat"
onclick="Coresp_Temp()">
</div>
<p></p>
<div id="replaceMe"></div>
</body>
</html>

The result displayed in a separate page in the shape of a table

defined with HTML tags.

For Each ... Next. This sentence allows to apply a set of sentences to an object

collection or to a multitude (arrays, vectors, multidimensional massive) without

 283

specifying the number of cycles (that specification is difficult if the dynamic

memory reservation used).

The syntax of that sentence is:

For Each element In group

Sentences

Next element

Example:
<head>
<title>Using For Each sentence</title>
</head>
<html>
<body>
<script language=vbscript>
<!—
dim divisions(2), i, indent
divisions(0)="English"
divisions(1)="French"
divisions(2)="German"
i=1
indent=" "
document.write("The faculty sections are:
")
For Each x in divisions
 document.write(indent & indent & i & ") " & x & "
")
 i=i+1
Next
-->
</script>
</body>
</html>

the code placed in the body of the HTML page will produces the output:

The faculty sections are:

 1) English

 2) French

 3) German

In the following example Web server VBScript the sentence For Each ... is used to

display the logical disks drives extracted from the operating system database (use

the command prompt to run WScript.exe to interpret and execute the script)

Example:
Option Explicit
On Error Resume Next

 284

Dim colDrives 'the collection that comes from WMI
Dim drive 'an individual drive in the collection
set colDrives = GetObject("winmgmts:").ExecQuery("select size,freespace " &_
 "from Win32_LogicalDisk where DriveType <> Null")
WScript.Echo "Drive Size Freespace"

For Each drive in colDrives 'walks through the collection
 WScript.Echo left(drive.DeviceID & Space(10),10) & " " & left(drive.size &_
Space(15),15) & " " & left(drive.freespace & Space(15),15)
Next

6.8 Inserting Objects in HTML pages

 The <object> tags allow specifying an object identification and dimensions

data. The <param> tags allows set the initial values for object properties.

 Example:
<OBJECT
 classid="clsid:99B42120-6EC7-11CF-A6C7-00AA00A47DD2"
 id=lblActiveLbl
 width=250
 height=250
 align=left
 hspace=20
 vspace=0
>
<PARAM NAME="Angle" VALUE="90">
<PARAM NAME="Alignment" VALUE="4">
<PARAM NAME="BackStyle" VALUE="0">
<PARAM NAME="Caption" VALUE="A Simple Label">
<PARAM NAME="FontName" VALUE="Verdana, Arial, Helvetica">
<PARAM NAME="FontSize" VALUE="20">
<PARAM NAME="FontBold" VALUE="1">
<PARAM NAME="FontColor" VALUE="0">
</OBJECT>

This example adds an ActiveX control, called Label, to a page. The object

must be installed before usage in the client computer if you want to work this

script.

For such inserted objects (or controls, as called in VB) we can get

properties, set properties, and invoke methods just as with any of the form controls

in VB.

Information about the properties, methods, events, and class identifiers

(CLSID) for several ActiveX controls that are available for use with Internet

Explorer can be found on the Microsoft® Web site (http://activex.microsoft.com).

http://activex.microsoft.com/

 285

6.9 Input Output Operations with InputBox and MsgBox

VBScript offers two functions for input/output operations: input -

InputBox(…) and output - MsgBox(…) used to activate a standard dialog.

InputBox. Displays a prompt in a dialog box, waits for the user to input text or

click a button, and returns a string containing the contents of the text box.

Syntax:
InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

where:

Argument Description

prompt Required. Is a string expression that is displayed as the message in

the dialog box. Can be up to 1024 characters in length. If prompt

consists of more than one line they must be separated by a carriage

return character (Chr(13)), a linefeed character (Chr(10)), or

carriage return–linefeed character combination (Chr(13) &

Chr(10)).

title Optional. String expression displayed in the title bar of the dialog

box. If you omit title, the application name is placed in the title

bar.

default Optional. String expression displayed in the text box as the default

response if no other input is provided. If you omit default, the text

box is displayed empty.

xpos Optional. A numeric expression that specifies, in twips, the

horizontal distance of the left edge of the dialog box from the left

edge of the screen. If xpos is omitted, the dialog box is

horizontally centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical

distance of the upper edge of the dialog box from the top of the

screen. If ypos is omitted, the dialog box is vertically positioned

approximately one-third of the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to

provide context-sensitive Help for the dialog box. If helpfile is

provided, context must also be provided.

context Optional. Numeric expression that is the Help context number

assigned to the appropriate Help topic by the Help author. If

context is provided, helpfile must also be provided.

 286

Example:

The call InputBox(

“Prompt”,

”Valoare_implicita”,

”Titlu”) will produces the

dialog box from figure 6.2.

MsgBox. Displays a message in a dialog box, waits for the user to click a button,

and returns an Integer indicating which button the user clicked.

Syntax:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])
where:

Argument Description

prompt Required. Is a string expression that is displayed as the message

in the dialog box. The maximum length of prompt is

approximately 1024 characters, depending on the width of the

characters used. If prompt consists of more than one line, you

can separate the lines using a carriage return character (Chr(13)),

a linefeed character (Chr(10)), or carriage return – linefeed

character combination (Chr(13) & Chr(10)) between each line.

buttons Optional. A numeric expression that is the sum of values

specifying the number and type of buttons to display, the icon

style to use, the identity of the default button, and the modality of

the message box. If omitted, the default value for buttons is 0.

title Optional. String expression displayed in the title bar of the dialog

box. If you omit title, the application name is placed in the title

bar.

helpfile Optional. String expression that identifies the Help file to use to

provide context-sensitive Help for the dialog box. If helpfile is

provided, context must also be provided.

context Optional. Numeric expression that is the Help context number

assigned to the appropriate Help topic by the Help author. If

context is provided, helpfile must also be provided.

The value for buttons argument can be determined as a sum of the

following Visual Basic constants:
Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore
buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel
buttons.

vbYesNo 4 Display Yes and No buttons.

Figure 6.2 Example of using InputBox

 287

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must
respond to the message box before
continuing work in the current
application.

vbSystemModal 4096 System modal; all applications are
suspended until the user responds to
the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message
box

VbMsgBoxSetForeground 65536 Specifies the message box window
as the foreground window

vbMsgBoxRight 524288 Text is right aligned

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-
to-left reading on Hebrew and Arabic
systems

For example the call MsgBox(“Prompt”,vbInformation+vbOkCancel,

“Titlu”) will produces the dialog shown in figure 6.3. The returned values

correspond to the pressed button:
Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

In the following example is illustrated how to write the message on many

lines and what means a string expression:

MsgBox "The Student " & Name & Chr(13) & Chr(10) & " has the average mark: "

& media

What is between “…” means literal strings that will be placed as such in the

message; Name and media are named variables whose content will be concatenated

by the string concatenation operator (&) with the literals and the function calls

Chr(13) & Chr(10) means display what follows on a separate line.

Figure 6.3 Example of an

MsgBox dialog

 288

6.10 Combining VBScript and Forms

In the example below the function validateValues(), is called by the

procedure Coresp_Temp() that in turn is activated by the event click on the button

Show, and looks to the form fields values and check if they are numbers. If not

numbers an error message returned to the caller and displayed in a message box

and the processing stops. If all numbers the Coresp_Temp() procedure produces the

HTML tags for a table containing the correspondence value between Celsius an

Fahrenheit degrees. Finally it displays the table (stored in the memory variable

repx) by replacing the division called “replaceMe” in the web page. The button

called ClearPage clears the forms fields together with the content generated in the

page.

<html>
<head>
<title>VBScript solution</title>
<script type="text/vbscript"
language="vbscript">
<!--
 function
validateValues(min,max,pas)
 dim ret
 ret="Yes"
 if isnumeric(trim(minTemp.value))
then
 min=trim(minTemp.value)
 else
 if ret="Yes" then ret=” ”
 ret=ret & "<<From>>"
 end if
 if isnumeric(trim(maxTemp.value))
then
 max=trim(maxTemp.value)
 else
 if ret="Yes" then ret=” ”
 ret=ret & "<<To>>"
 end if
 if isnumeric(trim(stepTemp.value)) then
 pas=trim(stepTemp.value)
 else
 if ret="Yes" then ret=” ”
 ret=ret & "<<Step>>"
 end if
 validateValues=ret
 end function
 Sub Coresp_Temp()
 Dim min,max,pas,fahrenheit, celsius,conr, repx

The page displayed by the code

 289

 ' Computation of the correspondence Co- Fo
 if (validateValues(min,max,pas))<>"Yes" Then
 msgbox "Err. 01. The value you typed in " & validateValues(min,max,pas) & "
box is not a number ? Correct them and press again."
 exit sub
 end if
 fahrenheit=0 : celsius=0
 repx="<table border=1 style='text-align:right'><tr><td width=120px>Fahrenheit
</td><td width=120px> Celsius </td></tr>"
 For fahrenheit = min To max Step pas
 celsius = (5/9)*(fahrenheit-32)
 repx=repx & "<tr><td width=120px>" & Right(Space(24) &
round(fahrenheit,2),12) & _
 "</td><td width=120px>" & Right(Space(24) & round(celsius,2),16) &
"</td></tr>"
 Next
 repx=repx & "</table>"
 document.getElementById("replaceMe").innerHTML=repx
 End Sub
 function ClearFields()
 minTemp.value=""
 maxTemp.value=""
 stepTemp.value=""
 document.getElementById("replaceMe").innerHTML=""
 end function
-->
</script>
</head>
<body>
<h1>VBScript based solution. </h1>

Type the values you want to compute the correspondence and then press the
Show button

<div style="border:1px solid #c0c0c0">
From:<INPUT type="text" id="minTemp" name="minTemp" size="4" align="right"
value="0" >
 To:<INPUT type="text" id="maxTemp" name="maxTemp"
size="5" align="right" value="300">
 Step:<INPUT type="text" id="stepTemp" name="stepTemp"
size="5" align="right" value="20">

<INPUT type="button" value="Show" ID="vbcompdat"
onclick="Coresp_Temp()">
<INPUT type="button" value="ClearPage" ID="vbclr" onclick="ClearFields()">
</div>
<p></p>
 <div id="replaceMe"></div>
</body>
</html>

 290

 291

6 VBScript ... 259

6.1 Introduction .. 259

6.2 Using and placing VBScripts in a HTML page 259

6.2.1 VBScript in the body of the HTML file 259

6.2.2 VBScript in heading .. 260

6.2.3 Inline VBScript ... 261

6.3 Variables and Constants ... 261

6.3.1 Variables ... 261

Arrays ... 264

Dynamic Arrays ... 267

6.3.2 Constants ... 269

6.4 Assignments and expressions ... 270

Assignments ... 270

Expressions .. 270

6.5 Procedures and functions ... 272

6.6 Decisional (conditional/alternative) statements 273

If … Then … Else .. 274

If … Then ... 274

If … Then … ElseIf ... 275

Case of .. 275

6.7 Repeating Structure .. 276

Conditional Loop with Condition Evaluated First 276

Conditional Loop with Condition Evaluated After 278

Counted Loop ... 278

For Each ... Next .. 282

6.8 Inserting Objects in HTML pages .. 284

6.9 Input Output Operations with InputBox and MsgBox 285

InputBox ... 285

MsgBox .. 286

6.10 Combining VBScript and Forms .. 288

7 JavaScript

7.1 JavaScript – An introduction

JavaScript is a scripting language that gives HTML designers a

programming tool and that can be used for easy management of user interface: it

can put dynamic text into a HTML page, it can make the page react to events or it

can create and easy manipulate cookies. A JavaScript inserted in the HTML

document allows a local recognition and processing (that means at client level) of

the events generated by the user such as those generated when the user scans the

document or for management of fill-in forms, for example, we must recuperate the

information referencing the client (name, address, payment etc). By inserting a

JavaScript in the HTML page we can validate the data filled by the client (for

example we can validate the Credit Card Account, solvability, transactions history,

etc) before it is submitted to the server.

JavaScript allows restructuring an entire HTML document for which we

can add, remove, change, or reorder items on a page. In order to change anything

on a page, JavaScript needs access to all elements in the HTML document. This

access, along with methods and properties to add, move, change, or remove HTML

elements, is given through the Document Object Model (DOM).

In 1998, W3C published the Level 1 DOM specification. This specification

allowed access to and manipulation of every single element in an HTML page. All

browsers have implemented this recommendation, and therefore, incompatibility

problems in the DOM have almost disappeared. The DOM can be used by

JavaScript to read and change HTML, XHTML, and XML documents. The DOM

is separated into different parts (Core, XML, and HTML) and different levels

(DOM Level 1/2/3):

 Core DOM - defines a standard set of objects for any structured

document;

 XML DOM - defines a standard set of objects for XML documents;

 HTML DOM - defines a standard set of objects for HTML documents.

Every object can have his own Collections, Attributes (Properties) and Methods.

Table 7.1 shows the JavaScript objects and table 7.2 shows the HTML DOM

objects.

Table 7.1 The JavaScript objects

Object Description

Window The top level object in the JavaScript hierarchy. The Window object
represents a browser window. A Window object is created
automatically with every instance of a <body> or <frameset> tag

 292

Table 7.2 HTML DOM objects

Object Description

Document Represents the entire HTML document and can be used to
access all elements in a page

Anchor An <a> element

Area An <area> element inside an image-map

Base An <base> element

Body The <body> element

Button A <button> element

Event Represents the state of an event

Form A <form> element

Frame A <frame> element

Frameset A <frameset> element

Iframe An <iframe> element

Image An element

Input button A button in an HTML form

Input checkbox A checkbox in an HTML form

Input file A fileupload in an HTML form

Input hidden A hidden field in an HTML form

Input password A password field in an HTML form

Input radio A radio button in an HTML form

Input reset A reset button in an HTML form

Input submit A submit button in an HTML form

Input text A text-input field in an HTML form

Link A <link> element

Meta A <meta> element

Option An <option> element

Select A selection list in an HTML form

Style An individual style statement

Table A <table> element

TableData A <td> element

TableRow A <tr> element

Textarea A <textarea> element

JavaScript is hardware and software platform independent. Within a

JavaScript inserted in the HTML page we can validate the data supplied by the

client (for example, to validate the card account, financial availability, history

regarding previous transactions etc.).

Navigator Contains information about the client's browser

Screen Contains information about the client's display screen

History Contains the visited URLs in the browser window

Location Contains information about the current URL

 293

For an inserted JavaScript the <script type="text/javascript"> and </script>

tags tells where the JavaScript starts and ends:
<html>
<body>
<script type="text/javascript">
<!--
... // put here the script body
//-->
</script>
</body>
</html>

The properties innerText and innerHTML allow us to access the contents -

the code - contained in an object. By manipulating the innerText and innerHTML

properties, we can change, dynamically, the text on a page (without reloading the

page). For example, given a paragraph whose id = "sampleparagraph", its

innerText and innerHTML may be accessed via:

document.getElementById('sampleparagraph').innerHTML – this is

interpreted as HTML

document.getElementById('sampleparagraph').innerText – this is interpreted

as text

If the content of sampleparagraph is “ inner text</>” then:

- innerText would display as inner text

- innerHTML would display as inner text.

Figure 3.1 shows a HTML form containing a VBScript and a JavaScript.

Figure 3.1 A Java Script Example

 294

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>New Page 2</title>
<script type="text/javascript" language="javascript">
 <!--
 function calc(a, b){ return (a*b);}
 // -->
</script>
<script id=clientEventHandlersVBS language=vbscript>
<!--
Sub Validate_onclick
 document.write("You Type:"+cstr(text1.value)+":"+cstr(text2.value))
End Sub
-->
</script>
</head>
<body>
 <script type="text/javascript" language="javascript">
 var welcmess="Welcome to scripts:";
 document.write(welcmess)
 </script>
 <p></p> First Number: <INPUT type="text"
ID=Text1 value="0" name="text1" size="20">
 <p></p> Second Number: <INPUT type="text" ID=Text2 value="0"
name="text2" size="20">
 <p></p> <p><INPUT type="button" value="Show" id="Validate"></p>
</body>
</html>

The Style object represents an individual style statement that you can think

as an inline style declaration. The Style object can be accessed from the document

or from the elements to which that style is applied. For example, given a form

whose id = "form1", its styles may be accessed via:

document.getElementById('form1').style.property

where property is one of the many style properties available to a given element.

Table 7.7 shows some common style properties that we can manipulate.

Table 7.7 Style properties

Property Description
style.background Sets or retrieves the background picture tiled

behind the text and graphics in the object.

style.backgroundAttachment Sets or retrieves how the background image is

 295

attached to the object within the document.

style.backgroundColor Sets or retrieves the color behind the content of
the object.

style.backgroundImage Sets or retrieves the background image of the
object.

style.border Sets or retrieves the width of the border to draw
around the object.

style.borderBottom Sets or retrieves the properties of the bottom
border of the object

style.borderBottomColor Sets or retrieves the color of the bottom border
of the object.

style.borderBottomStyle Sets or retrieves the style of the bottom border
of the object.

style.borderBottomWidth Sets or retrieves the width of the bottom border
of the object.

style.borderCollapse Sets or retrieves a value that indicates whether
the row and cell borders of a table are joined in
a single border or detached as in standard
HTML.

style.borderColor Sets or retrieves the border color of the object.

style.borderLeft Sets or retrieves the properties of the left border
of the object

style.borderLeftColor Sets or retrieves the color of the left border of
the object.

style.borderLeftStyle Sets or retrieves the style of the left border of
the object

style.borderLeftWidth Sets or retrieves the width of the left border of
the object.

style.borderRight Sets or retrieves the properties of the right
border of the object.

style.borderRightColor Sets or retrieves the color of the right border of
the object.

style.borderRightStyle Sets or retrieves the style of the right border of
the object.

style.borderRightWidth Sets or retrieves the width of the right border of
the object.

style.borderStyle Sets or retrieves the style of the left, right, top,
and bottom borders of the object

style.borderTop Sets or retrieves the properties of the top border
of the object.

style.borderTopColor Sets or retrieves the color of the top border of
the object.

style.borderTopStyle Sets or retrieves the style of the top border of
the object.

style. borderTopWidth Sets or retrieves the width of the top border of
the object.

style.borderWidth Sets or retrieves the width of the left, right, top,
and bottom borders of the object.

 296

style.bottomMargin Sets or retrieves the bottom margin of the entire
body of the page.

style.color Sets or retrieves the color of the text of the
object

style.font Sets or retrieves a combination of separate font
properties of the object. Alternatively, sets or
retrieves one or more of six user-preference
fonts.

style.fontFamily Sets or retrieves the name of the font used for
text in the object.

style.fontSize Sets or retrieves a value that indicates the font
size used for text in the object.

style.fontStyle Sets or retrieves the font style of the object as
italic, normal, or oblique.

style.fontVariant Sets or retrieves whether the text of the object
is in small capital letters.

style.fontWeight Sets or retrieves the weight of the font of the
object

style.margin Sets or retrieves the width of the top, right,
bottom, and left margins of the object.

style.marginBottom Sets or retrieves the height of the bottom
margin of the object.

style.marginHeight Sets or retrieves the top and bottom margin
heights before displaying the text in a frame.

style.marginLeft Sets or retrieves the width of the left margin of
the object.

style.marginRight Sets or retrieves the width of the right margin of
the object.

style.marginTop Sets or retrieves the height of the top margin of
the object.

style.marginWidth Sets or retrieves the left and right margin widths
before displaying the text in a frame.

style.padding Sets or retrieves the amount of space to insert
between the object and its margin or, if there is
a border, between the object and its border

style.paddingBottom Sets or retrieves the amount of space to insert
between the bottom border of the object and the
content.

style.paddingLeft

Sets or retrieves the amount of space to insert
between the left border of the object and the
content.

style.paddingRight

Sets or retrieves the amount of space to insert
between the right border of the object and the
content.

style.paddingTop Sets or retrieves the amount of space to insert
between the top border of the object and the
content.

style.position Sets or retrieves the type of positioning used for

 297

the object.

style.textAlign Sets or retrieves whether the text in the object is
left-aligned, right-aligned, centered, or justified.

style.textDecoration Sets or retrieves a value that indicates whether
the text in the object has blink, line-through,
overline, or underline decorations.

style.textIndent Sets or retrieves the indentation of the first line
of text in the object.

style.topMargin Sets or retrieves the margin for the top of the
page.

style.vAlign Sets or retrieves how text and other content are
vertically aligned within the object that contains
them.

style.visibility Sets or retrieves whether the content of the
object is displayed.

style.zIndex Sets or retrieves the stacking order of
positioned objects.

The JavaScript sentences involving text strings can be brake up within the

text string by using the \ (backslash) character.

The multiline comments can be defined between /* and */; the one line or

the inline comments can be defined by using // (two slashes). The extraspace is

ignored and the sentences are case sensitive. The ; (semicolon) ending sentence

character is optional for sentences defined alone on a line and compulsory for

separating the commnds defined in the same line (generally the inline scripts).

7.2 Using and placing JavaScripts in a HTML page

In the following paragraphs are introduced some examples of using (and

placing) JavaScripts in a HTML page.

7.2.1 JavaScript in the body of the HTML file

 Java script in the body of the HTML page will be executed when the page

loads. Generally, the scripts in the body, will generate the content of the page.

Example:
<html>
 <head>
 <title>
 Page containing JavaScript
 </title>
 </head>
 <body>
 <script type="text/javascript">
 document.write("This text is displayed by a JavaScript!")
 </script>

 298

 </body>
</html>

Comments:

The tag <script> have the attribute „type”, that specifies the script type

(JavaScript in our case). This script composed by a single command that

displays inside the page the text: "This text is displayed by a JavaScript!". If
you want include many commands on the same line this must be separated by

the ”;” (semi colon) character.

The concatenation of text string is realized by using the + character, for

example the expression "This text is " + "concatenated." will produce the

string "This text is concatenated."
The „/” have a special meaning for the HTML language and consequentely

when we want display the slash character itself we must precede (prefix) this

by a „\” (backslash), as illustrated in this example:

document.write("<i>"+"The Operator + is Concatention!"+"<\/i>")
If the script is included in a comment tag (<!--) then the browsers that do

not „know” (interpret) JavaScript will not display in the page the script text

(script source), as shown in the folowing sample:

<!--
document.write("<i>"+"This text is displayed by a
JavaScript!"+"<\/i>")
//-->

The browsers that know JavaScript will process the script, even this

included in a comment line.

The string „//”, comment in JavaScript, tell to the browser do not process

the line „-->”. We can not use the sintax „//<!--”, because a browser that do not

interpret JavaScript will display that string „//”.

7.2.2 JavaScript in heading

 If we want be shure that the script executes before displaying any element

in the page we can include this in the heading part of the HTML page (file). The

JavaScript in the head section will be executed when called, or when an event is

triggered.

Example:
<html>
 <head>
 <title>
 Page with JavaScript
 </title>
 <script type="text/javascript">
 document.write("This text is displayed by a JavaScript!")

 299

 </script>
 </head>
 <body>
 <P> This text must appear in the page after the execution of the
Javascript.
 </body>
</html>

The number of scripts placed in the head section and in the body of a

HTML page is unlimited.

7.2.3 External JavaScripts

A JavaScript can be stored into an external script file from where we can use in

many Web pages. In that way the script is written only once and in every HTML

file we want use is enough to invoke the file containing the script. The stored script

cannot contain the tag <script> or his pair </script>.

The steps followed when using externaly stored scripts are:

1. The creation of the external file containing the script lines, for example the

line:

document.write("Text from an external stored script.")
2. The file is saved with the wanted name and the extension js (java script), for

example we name the file scriptex.js

3. In the HTML pages we want include the stored script file is added the

following script:

<script type="text/javascript" src="scriptex.js">
</script>

The „src” attribute of the tag <script> allows specifying the file containing the

script we want execute.

7.3 Defining and using variables

 JavaScript can contain variable definitions and references to that variables.

The variables can be used to store values and the references to that values can be

done by referencing the name of the variable. The lifetime of variables can be:

- for variables declared within a function - can only be accessed within the

function; they created when encountered their declaration as the function

progreses and destroyed when exiting; they called local variables and you can

use the same name in diffrent functions;

- for variables declared outside a function – can be accessed anywhere in the

page; the name must be unique at that level; the lifetime of these variables

starts when they are declared, and ends when the page is closed.

The variable declaration can include an assignment and can be done using one of

sentences:

 300

var variableName=somevalue

or

variableName=somevalue

 In the following example, on define a variable called „mess” that is

initialized with the value „This text contained by the variable called mess”,

and later on referenced in a write sentence:
<html>
 <head>
 <title>
 Page with JavaScript
 </title>
 </head>
 <body>
 <script type="text/javascript">
 <!--
 var mess= " This text contained by the variable called mess"
 document.write("<i>"+mess+"<\/i>")
 //-->
 </script>
 </body>
</html>

The variables, functions and, objects names are case-sensitive and must begin with

a letter or an _ (underscore) character.

7.4 Methods

JavaScript is an object based programming language and uses objects (as

shown in tables 7.1 and 7.2). It has many built-in objects such as Area, Image,

Date, Window, and Document, and allow also user defining his own objects. In the

following table some methods for document and window explained:

Method Explanation-Example
document.write(”msg”) Displays the message „msg” in the page

containing the script
Example:
1) displaying text in a page:
document.write("This text will be displayed in the
page")
2) displaying attributes of a page, such as title and
URL:
<script type="text/javascript">
document.write(document.title+”:”+document.URL
)
</script>
</body>
*)

The formating of the message to be displayed by

 301

write and alert methods or other intrinsic functions
that manipulate strings is realized by intermediate
of escape sequences.

window.alert("msg") Displays a dialog box (alert box) containing the
message „msg” and the OK button.
Example:
function display_alert()
{

 alert("The message formatting is
ensured" + '\n' + "by using a lot of

so called \‘escape sequences\’")

}

window.prompt("msg","
default")

Displays a dialog box prompting the user for input
and confirm/cancel the dialog.
Example:
function display_prompt()
{

 var name=prompt("Type your name

here","")

 if (name!=null && name!="")
 {

 document.write("You typed " + name + "! It

is that correct ?")

 }
}

window.confirm("msg") Displays a dialog box with a message, a Cancel,
and an OK button (similar to MsgBox,).
Example:
function display_confirm()
{

 var buttonpressed=confirm("Press a button")

 if (buttonpressed ==true)
 {

 document.write("You pressed the OK

button!")

 }
 else
 {

 document.write("You pressed the Cancel

button!")

 }
}

window.open("URL",
"name_of_new_window
", "specifications")

Opens a new browser window for the page
indicated by the URL argument. The window can
be referenced by the name
“name_of_new_window” and can be customized
by the values supplied by the “specifications”
argument.

 302

Example:
<html>
<head>
<script type="text/javascript">
function open_win_ase()
{
window.open("http://www.ase.ro","_blank","toolbar
=yes, location=yes, directories=no, status=no,
menubar=yes, scrollbars=yes, resizable=no,
copyhistory=yes, width=400, height=300")
}
function open_win_avrams()
{
window.open("http://www.aavrams.ro","_blank","to
olbar=yes, location=yes, directories=no,
status=no, menubar=yes, scrollbars=yes,
resizable=no, copyhistory=yes, width=400,
height=300")
}
</script>
</head>
<body>
<form>
<input type="button" value="Faculty"
onclick="open_win_ase()">
<input type="button" value="Course Notes"
onclick="open_win_avrams()">
</form>
</body>
</html>

*)
Common Escape Sequences for text display formatting are represented by:

Ampersand \& Carriage return \r Backslash \\

Double quote \" Newline \n Backspace \b

Single quote \' Form feed \f Tab \t

7.5 Document Object Model (DOM)

The Document Object Model defines HTML documents as a collection of

objects and provides access to every element, identified uniquely by intermediate

of an id attribute, in a document. Any element may be accessed (by using the

method getElementById) and modified by a snippet of JavaScript. The Window

object is the top level object in the JavaScript hierarchy (it represents a browser

window). A Window object is created automatically with every instance of a

<body> or <frameset> tag. You can see and exercises the various elements of

DOM HTML by following the link:

http://www.w3schools.com/htmldom/dom_examples.asp

http://www.w3schools.com/htmldom/dom_examples.asp

 303

Examples:
a) This sample displays the message „This is first paragraph! Click, and

see”. If you click somewhere in the displayed text it displays:
 „The background is: the current color name
Will be changed in Yellow!”:
<html>
<head>
<title>Using DOM</title>
<script language="javascript">
<!--
 function xalert()
 {
 var x=document.getElementById("par1");
 x.style.background="red";
 alert("The background is:" + x.style.background+"\n Will be changed in
Yellow!")
 if(x.style.background=="red")
 {
 x.style.background="yellow";
 }
 else
 {
 x.style.background="red";
 }
 }
-->
</script>
</head>
<body>
 <p id="par1" onclick="xalert()" >This is first paragraph! Click, and
see</p>
</body>
</html>

b) This sample uses innerHTML to change dynamically the header

identified by „chgheader”:
<html>
<head>
<script type="text/javascript">
function getValue()
{
var x=document.getElementById("myHeader")
alert(x.innerHTML)
}
function chgval()
{
 document.getElementById("chgheader").innerHTML="My Header
(Changed)"
}

 304

</script>
</head>
<body>
<h1 id="myHeader" onclick="getValue()">This is first header</h1>
<p>Click on the header to alert its value</p>
<h2 id="chgheader" onclick="chgval()">This is the second header</h2>
<p>Click on the header to change its value</p>
</body>
</html>

7.6 Using and Defining Function

A function contains code (a set of statements) which is executed when

triggered by an event or a call to that function. In JavaScript is possible to use the

Java language intrinsic functions or user defined functions (must be defined before

any usage).

In the case of user defined functions is preferable that the definition is

made in the head section of the HTML page to be shure (or to ensure) in that way

they loaded before calling. This required because the browser start processing the

HTML page before completly downloading this from server. You may call a

function from anywhere within a page (or even from other pages if the function is

embeded in an external script).

The general syntax of a function is:

function function_name([argument1,argument2,etc])
{
 some_statements
 [return expression]
}
where:

function_name is the name the function you want have;

argument1,argument2,… the name for the function parameters if it has. Is

allowed do not pass any parameter to the function;

some_statements generally variable declarations and executables statements that

describes the steps of the algorithm you model. They define together with the

return statement (if present) the body of the function;

expression is the expression whose evaluation will represent the returned value. A

function can return (the sentence return must be present in the body) a value or not

(the return statement is not appearing between those of the function’s body);

A function can be invoked in one of the ways :

- without arguments:

 function_name()
- or with arguments:

 function_name(argument1,argument2,etc)
A function is executed when is called. The function can be called within a

JavaScript block, via an event handler (inside an HTML tag) or via a href link.

 305

 In the following example is called the function „alert” (a standard function

of the JavaScript language) with the argument „mess” (the variabe used in the

previous example) and that determine the display of an alert box in which the

content of variable „mess” displayed.

Example:

The call of an JavaScript intrinsic function.
<html>
 <head>
 <title>
 Page with JavaScript
 </title>
 </head>
 <body>
 <script type="text/javascript">
 <!--
 var mess= " This text contained by the variable called mess"

 document.write("<i>"+mess+"<\/i>") // a method of the document object
 alert(mess) // the intrinsic function invoked
 //-->
 </script>
 </body>
</html>

Example:

The call of an user defined function.
<html>
 <head>
 <title>
 Page with JavaScript
 </title>
 <script type="text/javascript">
 <!--
 function suma(a,b)
 {
 rezult=a+b
 return rezult
 }
 //-->
 </script>
 </head>
 <body>
 <script type="text/javascript">
 <!--
 var mess= " This text contained by the variable called mess"
 document.write("<i>"+mess+"<\/i>")
 alert(mess)
 alert(suma(“This text is a ”,”<String Concatenation>”))
 document.write("This digit is the result of adding 2 to 7 by using the
user defined function suma:"+suma(2,7))

 306

 //-->
 </script>
 </body>
</html>

 Example :

In this example the JavaScript defined in the head part of the page and in

the body part in a href tag.
<html>
<head>
<title>A Page with scripts</title>
<script type="text/javascript">
 function chgbgcolor()
 {
 document.bgColor="green"
 }
 function chcolor()
 {
 document.bgColor="orange"
 }
</script>
<script id=clientEventHandlersJS language=javascript>
<!—
function window_onload() {
 document.bgcolor="orange"
}
//-->
</script>
<script language=javascript for=window event=onload>
<!—
return window_onload()
//-->
</script>
</head>
<body>
<p>The page not empty </>
This
is a script in href</p>
<h1 id="header1" onclick="chgbgcolor()"> IT4B: </h1>
<h2 id="header2">Errata</h2>
</body>
</html>

7.7 Asignments and expressions

The general syntax for assignment is:

variable = expression

The interpretation of this is: the variable before the assignment operator is

assigned a value of the expression after it, and in the process, the previous value of

 307

variable is destroyed. An expression can be an arithmetic expression, a logical

expression or expression on character string. It can be a variable, a constant, a

literal, or a combination of these connected by appropriate operators.

 An assignment statement stores a literal value or a computational result in a

variable and is used to perform most arithmetic operation in a program.

7.7.1 Arithmetic Expression

An arithmetic expression uses the syntax:

 <operand1><arithmetic_operator><operand2>

where:

- <operand1>,<operand2> can be numeric variables, constants or arithmetic

expressions (or calls to functions that returns numeric values)

- arithmetic_operator (binary operators) is one of those shown in table 7.3.
Table 7.3 Arithmetic Operators

For arithmetic expressions the assignment operator can be combined with the

arithmetic ones to define compact expressions as shown in the table 7.4.

Table 7.4 Assignment Operators

Operator Example Is The Same As

= x = y x = y

+= x += y
x+=y-12

x = x + y
x=x+(y-12)

-= x-=y
x -= y +12

x=x-y
x = x - (y + 12)

Operator Description Example
Suppose x=2

+ Addition x+2 = 4

- Subtraction 5-x = 3

* Multiplication x*5 = 10

/ Division 9/3 = 3; 5/2 = 2.5

% Modulus (division remainder) 5%2 = 1; x%2 = 0; 10%5 = 0

++ Increment By One
*)
 x++ = 3

-- Decrement By One
*)
 x-- = 1

*)
The increment and decrement operators can either be used as a pre- or a

post- operator:

Post-Increment: the line of code is
executed as then the
increment/decrement is performed.
y = x++ is equivalent to the sequence:
y = x
x = x + 1

Pre-Increment: the increment or
decrement is performed before
whatever other operations are present
within the given line of code.
y = ++x is equivalent to the sequence:
x = x + 1
y = x

 308

= x=y
x *= 3 + y

x=x*y
x = x * (3 + y)

/= x /= y
x/=y+2

x = x / y
x=x/(y+2)

%= x %= y
x%=y+2

x = x % y
x=x%(y+2)

7.7.2 Logical Expression

A logical expression can be:

• simple, with the general syntax:

 <variable>[<relation_operator><variable>]

 or

 <variable>[<relation_operator><constant>]

 <relation_operator>::=<<=>>===!=

Table 7.5 shows and explains the comparison operators.

 • complex, with the general syntax:

 e1 && e2 - logical and;

 e1 || e2 - logical or;

 ! e1 - logical not.

 <logical_expression1><logical_operator><logical_expression2>

 where the logical_operator can be:

 && (and; two ampersand character), || (or; two vertical bar character) as

binary operators (connectives);

 ! (not) as unary operator.

The precedence of evaluation of logical operators is Not, And, Or. The

logical operator together with the truth table defining the way they operate and

usage examples are shown in table 7.6.

Table 7.5 Comparison Operators

Operator Description Example
Suppose x=2

== is equal to x == 3 returns false

=== Is equal to (checks for both
value and data type)

y=”2”
x==y returns true
x===y return false (x integer; y
string)

!= is not equal x != 3 returns true

> is greater than x > 3 returns false

< is less than x < 3 returns true

>= is greater than or equal to x >= 3 returns false

<= is less than or equal to x <= 3 returns true

 309

Table 7.6 Logical Operators

Operator Description Example
Suppose x=2; y=3

&& x y and
(x < 9 && y > 1) returns true
(x < 9 && y < 1) returns false
(x > 9 && y > 1) returns false
(x > 9 && y < 1) returns false

T T T

T F F

F T F

F F F

|| x y or
(x < 9 || y > 1) returns true
(x < 9 || y < 1) returns true
(x > 9 || y > 1) returns true
(x > 9 || y < 1) returns false

T T T

T F F

F T F

F F F

! x not
!(x == y) returns true
!(x > y) returns false

F T

T F

7.7.3 String Expression

An expression on character string can be built (in Java but not only) using:

- the concatenation operator: +

- intrinsic functions for extracting substrings from a string variable or

string constant such as:

 Right(string,number_of_characters) - extracting substring from the end

 Left(string,number_of_characters) - extracting substring from the

beginning

- functions that manipulate strings:

 Cstr(expression) – convert the expression in a character string;

 Lcase(string_expression) – convert the string in lower case;

 Ltrim(string), Rtrim(string), Trim(string) – eliminates the spaces

(trailing) from left (leading blanks), right and, respectively left-right;

 Str(number) – converts number in string;

 Ucase(string) – converts string to uppercase.

The code sequence below is string concatenation by using the concatenation

operator + example.

text1 = "Faculty of"
text2 = "Business
Administration"
text3 = text1 +” “+ text2

The variable text3 now contains the string "Faculty of Business Administration".

The concatenation with the space character “ “ is realized to separate the strings

(generally stored with no trailing blanks).

 310

7.8 Conditional Execution

A script can include branches (If...Then...Else...) alowing the definition of

conditional executions similarly to the example in the following sequence:

if (navigator.appName.indexOf("Internet Explorer")!=-1)
{
 alert("The used Navigator is Internet Explorer!")
}
else
{
 alert(("The used Navigator is not Internet Explorer!")
}

These code sequence will display an alert box containing a diffrent text

depending on the type of the used browser in which the page displayed. The

conditional expression of the IF sentence searches for the text „Internet Explorer”

in the name of the browser (navigator) application. If this text do not appears in the

browser name then the function „indexOf” returns the value „-1”. The condition

evaluates to True only if the return of that function is not „-1”. The JavaScript IF

sentence, „switch” sentence or the conditional operator „?” can be used to define

the conditional execution.

7.9 Decision sentences

The decision sentences are used to model the decision structure and that is used

for choosing an alternative (an operation or block of operations) from two possible

alternatives. Algorithm steps that select from a choice of actions are called decision

steps.

If … Then … Else …

if (condition)

operation1;

else

operation2;

If one of operations includes a sentences sequence then this sequence will be

included in a sentence block:

{

operationi;

}

The decision block can be expressed in a natural language as:

- evaluate the expression that defines the logical condition <condition>;

 311

- If the result of evaluation is True

Then execute operation1

Else execute operation2;

- continue the execution with the next step in the flow

If … Then …

if (condition) operation;

if (condition) {

operations;

}

if...else if....else statement

This statement allows select one of many blocks of code to be executed.

if (condition1)

{

code to be executed if condition1 is true

}

else if (condition2)

{

code to be executed if condition2 is true

}

else

{

code to be executed if condition1 and condition2 are not true

}

 The logical condition <conditionx> is a logical expression that will be

evaluated either to True or either to False. The logical conditions can be simple or

complex logical conditions.

A simple logical condition has the general syntax:

<variable> [<relation_operator ><variable>]

or

<variable> [<relation_operator ><constant>]

The relation_operator can be one of:
Relation Operator Interpretation

< Less than. Example: delta < 0

<= Less than or equal. Example: delta <= 0

> Greater than. Example: delta > 0

>= Greater than or equal. Example: delta >= 0

= = Equal to. Example: a == 0

!= Not equal. Example: a!=0

The simple logical conditions will be connected by the AND, OR, and

NOT logical operators to form complex conditions. The logical operators are

 312

evaluated in the order NOT, AND, and OR. The change of the natural order of

evaluation can be done by using parenthesis in the same way for arithmetic

expressions.

Example:
<html> <head> <title>New Page 1</title> </head><body>
<script type="text/javascript">
// If the time is less than 10,write a "Good morning" greeting
// If time between 10 and 16 write a "Good day" greeting
// Otherwise "Hello world"
// Write the hour and If time <12 write AM else write PM
var computerdate = new Date()
var time = computerdate.getHours()
if (time<10)
{
document.write("Good morning! Now is " +time+((time<12)?' AM':'
PM')+"")
}
else if (time>10 && time<16)
{
document.write("Good day! Now is " +time+((time<12)?' AM':' PM')+"")
}
else
{
document.write("Hello World! Now is " +time+((time<12)?' AM':'
PM')+"")
}
</script> </body>
</html>

Switch. Execute one of several groups of statements depending on the value of an

expression (called selector). The case structure (and statement) can is especially

used when selection is based on the value of a single variable or a simple

expression (called the case selector).

switch (expression_int) {

case constant_expression1:

operations1

case constant_expression2:

operations 2 . . .
default:

operations n

}

- expression_int is an expression that must produced an integral value (int);

- constant_expressioni must be a constant expression;

- the label default: can be used only once.

The expression_int is also called the selector of instruction Case.

 313

- if the value of the selector don’t fit to a constant the operations specified on

branch Default (otherwise) will be executed;

- the values of constants must be unique for a switch sentence.

Example:

The sequence below uses the switch statement to find out the Romanian name for

the day of the week of a date.
<HTML>
<HEAD>
<meta name=vs_defaultClientScript content="JavaScript">
<TITLE></TITLE>
<META NAME="GENERATOR" Content="Microsoft Visual Studio">
<META HTTP-EQUIV="Content-Type" content="text/html” >
<script type="text/javascript">
/* The sequence will write the name of the day in romanian
 (Sunday=0, Monday=1, Tuesday=2, etc)
*/
function RODay(aDayNumber)
{
 switch (aDayNumber)
 {
 case 0:
 return "Duminica"
 case 1:
 return "Luni"
 case 2:
 return "Marti"
 case 3:
 return "Miercuri"
 case 4:
 return "Joi"
 case 5:
 return "Vineri"
 case 6:
 return "Sambata"
 default:
 alert("What day is it? \n The computer is virused or hardware damaged
!")
 return "What day is it? \n The computer is virused or hardware
damaged !"
 }
 }
</script>
<script id=clientEventHandlersJS language=javascript>
<!--
function Button1_onclick() {
 var i=0
 var datadeazi=new Date()
 var ziua=datadeazi.getDay()

 314

 for (i=ziua;ziua<=6;ziua++){
 document.write(ziua+": " + RODay(ziua)+"
")
 }
}
//-->
</script>
<script language=javascript for=Button1 event=onclick>
<!--
return Button1_onclick()
//-->
</script>
</HEAD>
<BODY>
<p>This page contains a Java Script exploiting the switch sentence.</p>
<p>
 <input id=Button1 type=button value="Press This"></p>
</BODY>
</HTML>

Conditional Operator (?)

The conditional operator has the syntax:

 (conditional_expression) ? true_case_expression: false_case_expression

where:

<conditional_expression> is a logical expression that will be evaluated either to

True or either to False. Is a very good idea to include the expression in parenthesis

(to enforce his evaluation).

<true_case_expression> is the expression whose evaluation will be returned if the

conditional expression evaluates to True

<false_case_expression> is the expression whose evaluation will be returned if the

conditional expression evaluates to False.

Example:
<HTML> <HEAD>
<meta name=vs_defaultClientScript content="JavaScript">
<TITLE></TITLE>
<META NAME="GENERATOR" Content="Microsoft Visual Studio">
<META HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8">
</HEAD>
<BODY>
<script language=javascript>
 var TotalBalance, savings=300
 TotalBalance =(savings==0) ? 0:(savings*1.03)
 // TotalBalance is now 309
 document.write("Total Balance is now: " + TotalBalance)
</script>
</BODY></HTML>

 315

7.10 Popup Boxes

In JavaScript we can create three kinds of popup boxes by invoking the

associated intrinsic function. This functions are:
Function Description

alert(”text_to_be_displayed”) Displays an alert box containing the message

passed in argument and an OK button. This call

produces the box:

confirm(”text_to_be_displayed”) Displays a box containing the message passed in

argument provided with an OK (confirm) and

Cancel (denny) button. This call produces the

box:

prompt(”text_to_be_displayed”,
”defaultvalue”)

Displays an input dialog box provided with a text

box to fill data and an OK (return the value typed

to the caller) and Cancel (return a Null value to

caller). This call produces the box:

7.11 Cycles

The repeating structure repeats a block of statements while a condition is

True or Until a condition becomes True. The repetition of steps in a program is

called a loop.

The repeated execution of a sequence of instructions (loop) can be done by

using the looping sentences „while” , „do...while” and, for.

 316

Example:
<html>
<head>
<title>
 Page containing loop
</title>
</head>
<body>
<script type="text/javascript">
<!--
 for (i=0; i<5; i++)
 {
 document.write("Step i: "+i+"
")
 }
//-->
</script>
</body>
</html>

In this example the values of i are written into the page „Step i:the_vale_of_i”

from the value 0 to 4.

a) The condition evaluated first

- first syntax:

 while (condition) operation;

- second syntax:

 while (condition)

{

operations;

[continue;]

[break;]

}

where:

- continue jump to the condition evaluation;

- break interrupt the cycle and transfer the execution to the sentence that

follows to the end block marker }

Note. The ; character ending sentences is optional if the sentence is written alone

on the line. It is necessary if you define mode sentences on the same line.

The executions of such blocks follow the scenario (while): the condition is

evaluated and if the condition evaluates to:

• True then executes the block of statements;

• False then end the execution of the cycle (Loop) and continue the

execution of the program.

 317

If for the first time the condition is False the sentence block is simply

skipped.

b) the condition evaluated after

do

{

operations;

} while conditions

In this case the operation is executed first and then the condition is evaluated and

can be described as:

- the operations are executed;

- the condition is evaluated;

- if the result of the evaluation of the condition is False then loop to

execute again the operations;

- if the evaluation of the condition is True then continue the execution of

the program (and close the loop).

c) counted loop

for (expression1; expression2; expression3) operation;

If many operations desired in the cycle they must be included as block;

expression1 – is an expression that initializes the counter, having the general

syntax counter=startvalue;

expression2 – contains the definition for ending the loop, generally a logical

condition of the form counter<=endvalue;

expression3 – is an expression to increment or decrement the value for the

counter, for example counter=counter+increment.

The cycle can be unconditionally stopped by using the instruction break and

can be unconditionally restarted by using the sentence: continue.

Example:

for (counter = iv; fv; s) {operations};

The execution of For sentence follows the scenario:

1. The value iv is assigned to the variable counter;

2. The value of variable counter is compared with the end value fv

(the value can be determined by evaluating an expression);

3. The operations are executed;

4. The value of variable counter is incremented with the value step

(1 if step not specified);

5. Repeat the steps from 2 to 5.

 318

Example :

Figure 7.1 shows the usage of document object for accessing the

forms collection and displaying, as comma separated values, the attributes

Name, Value and Type.
<html>
<head>
<title>A form and
javascript</title>
</head>
<body>
<form method="POST"
action="--WEBBOT-SELF--">
 <!--webbot bot="SaveResults"
u-file="C:\Documents and
Settings\Vio\My Documents\My
Webs_private\form_results.csv"
 s-format="TEXT/CSV" s-label-
fields="TRUE" -->
 <!-- This is the description of
the form -->
 <p>First name:<input
type="text" name="FName"
size="20"></p>
 <p>Last Name:<input type="text" name="LName" size="20"></p>
 <p>Gender:<input type="radio" value="V1" name="Male" checked>Male
 <input type="radio" name="Female" value="V2">Female</p>
 <p><input type="submit" value="Submit" name="B1">
 <input type="reset" value="Reset" name="B2"></p>
</form>
<script type="text/vbscript">
 document.write("Name, Value, Type "+"
")
</script>
<script type="text/javascript">
 for (i=0; i < document.forms[0].elements.length;i++)
 {
 document.write(document.forms[0].elements[i].name + ", ");
 //syntax below uses the name attribute of the form to access the
form's elements
 document.write(document.forms[0].elements[i].value + ", ");
 document.write(document.forms[0].elements[i].type + "
");
 }
</script>
</body>
</html>

For … In statement

for (variable in object)

{ code to be executed }

Figure 7.1 Accessing HTML form

elements

This lines
printed into
page by the for
sequence in the
script

 319

Example :

In this example is defined an array object called divisions and the first

three elements initialized. The for…in sentence will fill in the HTML document the

lines initialized in the array.
html>
<body>

<script type="text/javascript">

var x, nr

var divisions = new Array()
divisions[0] = "English"
divisions[1] = "French"
divisions[2] = "German"

for (x in divisions)
{
nr=x/1+1;
document.write(nr+": "+divisions[x] + "
")
}
</script>

</body>
</html>
that produces the output :

1: English

2: French

3: German

7.12 Using events to trigger script execution

Some events that can be associated with HTML pages are represented by

the following:

Event Occurs when...

onabort a user aborts page loading

onblur a user leaves an object

onchange a user changes the value of an object

onclick a user clicks on an object

ondblclick a user double-clicks on an object

onerror an error occurs

onfocus a user makes an object active

onkeydown a keyboard key is on its way down

 320

onkeypress a keyboard key is pressed

onkeyup a keyboard key is released

onload
a page is finished loading (in Netscape, this event occurs
during the loading of a page).

onmousedown a user presses a mouse-button

onmousemove a cursor moves on an object

onmouseover a cursor moves over an object

onmouseout a cursor moves off an object

onmouseup a user releases a mouse-button

onreset a user resets a form

onselect a user selects content on a page

onsubmit a user submits a form

onunload a user closes a page; a frequent usage is to deal with cookies.

The table below shows common usage of events:
Event Usage

onload, onunload The onload event is often used to check the visitor's
browser type and browser version, and load the proper
version of the web page based on the information. Both
events frequently used to deal with cookies.

onfocus, onblur,
onchange

Generally used in combination with validation of form
fields.

onsubmit Is used to validate All form fields before submission (is
possible to deal with logical validation involving more
fields from the form).

onmouseover,
onmouseout

Generally used for creating “animated” buttons.

In the following example is shown an inline JavaScript code (without the tags

<script> and </script>). The web page contains a button whose property „Caption”

has the value „ASE”. When the event „onclick” occurs (when clicking the button)

is called the function „open” (member of „windows” functions gruop), having in

arguments the arguments required to open the ASE site home page in a window

called internally „ase_home”.

Example:
<html>
<head>
<title>
 Command button link
</title>
</head>
<body>
 <form>

 321

 <input type="button" value="ASE" onclick='window.open("http://www.ase.ro",
"ase_home")'>
 </form>
</body>
</html>

 Example:
<html>
<head>
<title>Pagina cu Cronometru </title>
<script type="text/javascript">

function startTime()
{
var today=new Date()
var h=today.getHours()
var m=today.getMinutes()
var s=today.getSeconds()
// add a zero in front of numbers<10
m=checkTime(m)
s=checkTime(s)
document.getElementById('txt').innerHTML=h+":"+m+":"+s
t=setTimeout('startTime()',500)
}
function checkTime(i)
{
if (i<10)
 {i="0" + i}
 return i
}

</script>
</head>
<body onload="startTime()">
<div id="txt" align=right></div>
<script type="text/javascript">

var x, nr
var divisions = new Array()
divisions[0] = "English"
divisions[1] = "French"
divisions[2] = "German"
for (x in divisions)
{
nr=x/1+1;
document.write(nr+": "+divisions[x] + "
")
}

</script>
</body>
</html>

 322

7.13 Handling errors

In JavaScript are two ways for catching errors in a Web page:

- by using the try…catch statement;

- by using the onerror event.

Try…catch

The code you want prevent harassing user by error messages is included

between try sentence and catch(err) sentence:

try

{

//Run some code here

}

catch(err)

{

//Handle errors here

}

Throw

Throw statement allows user to create an exception that can be catch and

processed later on by try..catch. The syntax is:

throw(exception)

onerror event

 The syntax for the onerror event and his associated error handler is:

Onerror=handleError

function handleError(msg, url, l)
{
// handle the error here
return true (success) or false (failure)
}

7.14 Commented samples

1. Displaying web content in new browser window

Below is a couple of two general functions:

ShowSmallWindow(from_uri,win_name, win_height, win_width, resize,scroll)

and
MakeCallString(to_uri,win_name, win_height, win_width, resize)

 323

The function ShowSmallWindow opens a new window with a specified

dimension and behavior to user interaction in which displays the content at the

address indicated by the from_uri argument.

Required arguments:

- from_uri - in general the URL address of the resource to be displayed;

- win_name - the name of the window;

- win_high, win_width the high and, respectively, width of the window;

- resize - if resizing of the window allowed (Yes) or not (no);

- scroll - if the scroll bars will be available and viewable (Yes) or not (no).

function ShowSmallWindow(from_uri,win_name, win_height, win_width,
resize,scroll)
 {
 var sFeature;

sFeature='directories=no, location=no, status=no, menubar=no, scrollbars=' +
scroll + ', resizable=' + resize + ', toolbar=no, height=' +
 win_height + ', width=' + win_width;
window.open(from_uri, win_name, sFeature);

 }

The function uses the open method available via DOM. The opened window do not

have menu bar, status line, and toolbar and do not have the directory pannel and

don’t displays the current location. A call example of that function is from the the

index.htm page of the site http://www.avrams.ro:

<td title="The image is from Avrams Collection and called 'Horizon in the sunshine',
click to enlarge" valign="top" style="height: 46px; width: 746px; margin-top:0px;"
class="avbkgtop" onclick= 'ShowSmallWindow("http://avrams.ro/descript-

horizon.html", "HorizonInSunshine","640","656","no","no")'>

The function MakeCallString opens a new window with a specified dimension

and behavior to user interaction in which displays the content at the relative

address indicated by the user in a form field called ‘dnx’ prefixed by the from_uri

argument, as a base address.

The function MakeCallString requires in arguments as follows:

- to_uri specifying the resource base address to which concatenate what user

types in the text box called ‘dnx’ (the name=”dnx” and/or id=”dnx)”;

- win_name the name given to the opened window;

- the dimensions of that window (win_height, win_width);

- resize - if resizable (yes) or not (no).

function MakeCallString(to_uri,win_name, win_height, win_width, resize)
 {
 var from_uri;
 from_uri=to_uri + '/' + document.getElementById('dnx').value;

http://www.avrams.ro/

 324

 ShowSmallWindow(from_uri,win_name, win_height, win_width,"yes","yes")
 }

2. Convert decimal integer numbers to a new power of two number base

This is the definition of a general function called Dec_To_NewBase(

oldNumber, newBase, twoPower) whose required arguments means:

- oldNumber the decimal integer number you want convert in a new base;

- newBase the new base in which you want express the number;

- twoPower which power of two represents the number.

The variable Digits is a global variable (defined outside of any function body)

of type string containing the digits in the new bases (here taken only 0 to f, as to

cover binary, octal, and hexadecimal number bases).

 The function can be changed to either:

- validate if truly the power of two is the power of the integer;

- determine if the integer is a power of two and which one, and to eliminate

from the call model of twoPower argument.

var Digits="0123456789abcdef";

function Dec_To_NewBase(oldNumber, newBase, twoPower)
{
 var newNumber = Digits.substr(oldNumber & (newBase-1), 1);
 while(oldNumber > (newBase-1))
 {
 oldNumber >>= twoPower;
 newNumber = Digits.substr(oldNumber & (newBase-1), 1) + newNumber;
 }
 return newNumber;
}

The variable newNumber is reserved and initialized to the leftmost character of

the result of applying the logical and (“anding”) between the oldNumber and the

highest digit in the new base, (newBase-1). If the oldNumber is greather than the

(newBase-1) then a cycle computation started until oldNumber becomes less than

(newBase-1).

In the cycle we have two operations:

a) oldNumber>>twoPower (shift right) which means divide the value of the

content of variable called oldNumber to two at the power twoPower and

store the quotient of the division in the variable oldNumber;

b) the new content of the variable newNumber is the concatenation between:

- the leftmost character of the string obtained by “anding” the oldNumber

and the highest digit in the new base, (newBase-1);

- the old content of the variable newNumber.

When the cycle ends the new number value is returned to the caller and the

function ends his execution.

 325

The following functions are specialized and they implement a particular

conversion, for that reason the values for newBase and twoPower are defined

locally in the body of the function. They implemented in that way in the page

Convert-integer-numbers.html of the website http://www.avrams.ro with the

purpose to easy understanding the algorithm.

The code of that function is:

<script type="text/javascript" language=javascript>
<!--

var Digits="0123456789abcdef";

/* Convert Decimal Integers (base 10) to Hexadecimal (base 16), two power 4 */
function dec2hex(d)
{

 var h = Digits.substr(d & 15, 1);
 while(d > 15)
 {
 d >>= 4;
 h = Digits.substr(d & 15, 1) + h;
 }
 return h;

}

/* Convert Decimal Integers (base 10) to Octal (base 8), two power 3 */
function dec2oct(d)
{

 var o = Digits.substr(d & 7, 1);
 while(d > 7)
 {
 d >>= 3;
 o = Digits.substr(d & 7, 1) + o;
 }
 return o;

}

/* Convert Decimal Integers (base 10) to Binary (base 2), two power 1 */
function dec2bin(d)
{

 var b = Digits.substr(d & 1, 1);
 while(d > 1)
 {
 d >>= 1;
 b = Digits.substr(d & 1, 1) + b;
 }
 return b;

}
 --> </script>

http://www.avrams.ro/

 326

3. Compute Easter date for a wanted year

The function requires as in argument Wanted_Year containing the decimal

integer representing the year for which you compute when Easter will be, computes

the Easter date based on Gauss algorithm, and displays it. You can find another

implementation and a description of the modeled algorithm in the page compute-

easter-date.html of the website http://www.avrams.ro.

function Easter_Date(Wanted_Year){
 var D;
 var E;
 if (Wanted_Year<0){
 alert("The value for Year must be a positive number!");
 return -1;
 }
 D = ((Wanted_Year % 19) * 19 + 15) % 30;
 E = (((Wanted_Year % 4) * 2 + (Wanted_Year % 7) * 4) + 6 * D + 6) % 7;
 D=D+E+4;
 if(D>30){
 alert(‘Easter will be on: ‘+'5/'+(D-30.)+'/'+Wanted_Year);
 }
 else
 {
 alert(‘Easter will be on: ‘+'4/'+(D)+'/'+Wanted_Year);
 }
}

In the line bellow the press of the button will trigger the call of the Easter_Date

function (the event onclick) having in argument the year 2010:

<input name="callEaster" type="button" value="Easter"
onclick="Easter_Date(2010)" />

and will produce the output (the alert call):

http://www.avrams.ro/

 327

 328

7 JavaScript ... 291

7.1 JavaScript – An introduction .. 291

7.2 Using and placing JavaScripts in a HTML page 297

7.2.1 JavaScript in the body of the HTML file 297

7.2.2 JavaScript in heading .. 298

7.2.3 External JavaScripts .. 299

7.3 Defining and using variables ... 299

7.4 Methods .. 300

7.5 Document Object Model (DOM) ... 302

7.6 Using and Defining Function ... 304

7.7 Asignments and expressions .. 306

7.7.1 Arithmetic Expression ... 307

7.7.2 Logical Expression .. 308

7.7.3 String Expression .. 309

7.8 Conditional Execution .. 310

7.9 Decision sentences ... 310

7.10 Popup Boxes .. 315

7.11 Cycles ... 315

7.12 Using events to trigger script execution .. 319

7.13 Handling errors... 322

7.14 Commented samples .. 322

Annexes

Annex 1. List of VBScript intrinsic functions

Date/Time Functions

Function Description

CDate Converts a valid date and time expression to the variant of
subtype Date

Date Returns the current system date

DateAdd Returns a date to which a specified time interval has been
added

DateDiff Returns the number of intervals between two dates

DatePart Returns the specified part of a given date

DateSerial Returns the date for a specified year, month, and day

DateValue Returns a date

Day Returns a number that represents the day of the month
(between 1 and 31, inclusive)

FormatDateTime Returns an expression formatted as a date or time

Hour Returns a number that represents the hour of the day (between
0 and 23, inclusive)

IsDate Returns a Boolean value that indicates if the evaluated
expression can be converted to a date

Minute Returns a number that represents the minute of the hour
(between 0 and 59, inclusive)

Month Returns a number that represents the month of the year
(between 1 and 12, inclusive)

MonthName Returns the name of a specified month

Now Returns the current system date and time

Second Returns a number that represents the second of the minute
(between 0 and 59, inclusive)

Time Returns the current system time

Timer Returns the number of seconds since 12:00 AM

TimeSerial Returns the time for a specific hour, minute, and second

TimeValue Returns a time

Weekday Returns a number that represents the day of the week
(between 1 and 7, inclusive)

WeekdayName Returns the weekday name of a specified day of the week

Year Returns a number that represents the year

 328

Conversion Functions

Function Description

Asc Converts the first letter in a string to ANSI code

CBool Converts an expression to a variant of subtype Boolean

CByte Converts an expression to a variant of subtype Byte

CCur Converts an expression to a variant of subtype Currency

CDate Converts a valid date and time expression to the variant of
subtype Date

CDbl Converts an expression to a variant of subtype Double

Chr Converts the specified ANSI code to a character

CInt Converts an expression to a variant of subtype Integer

CLng Converts an expression to a variant of subtype Long

CSng Converts an expression to a variant of subtype Single

CStr Converts an expression to a variant of subtype String

Hex Returns the hexadecimal value of a specified number

Oct Returns the octal value of a specified number

Format Functions

Function Description

FormatCurrency Returns an expression formatted as a currency value

FormatDateTime Returns an expression formatted as a date or time

FormatNumber Returns an expression formatted as a number

FormatPercent Returns an expression formatted as a percentage

Math Functions

Function Description

Abs Returns the absolute value of a specified number

Atn Returns the arctangent of a specified number

Cos Returns the cosine of a specified number (angle)

Exp Returns e raised to a power

Hex Returns the hexadecimal value of a specified number

Int Returns the integer part of a specified number

Fix Returns the integer part of a specified number

Log Returns the natural logarithm of a specified number

Oct Returns the octal value of a specified number

Rnd Returns a random number less than 1 but greater or equal to 0

Sgn Returns an integer that indicates the sign of a specified number

Sin Returns the sine of a specified number (angle)

Sqr Returns the square root of a specified number

Tan Returns the tangent of a specified number (angle)

 329

Array Functions

Function Description

Array Returns a variant containing an array

Filter Returns a zero-based array that contains a subset of a string
array based on a filter criteria

IsArray Returns a Boolean value that indicates whether a specified
variable is an array

Join Returns a string that consists of a number of substrings in an
array

LBound Returns the smallest subscript for the indicated dimension of an
array

Split Returns a zero-based, one-dimensional array that contains a
specified number of substrings

UBound Returns the largest subscript for the indicated dimension of an
array

String Functions

Function Description

InStr Returns the position of the first occurrence of one string within
another. The search begins at the first character of the string

InStrRev Returns the position of the first occurrence of one string within
another. The search begins at the last character of the string

LCase Converts a specified string to lowercase

Left Returns a specified number of characters from the left side of a
string

Len Returns the number of characters in a string

LTrim Removes spaces on the left side of a string

RTrim Removes spaces on the right side of a string

Trim Removes spaces on both the left and the right side of a string

Mid Returns a specified number of characters from a string

Replace Replaces a specified part of a string with another string a
specified number of times

Right Returns a specified number of characters from the right side of a
string

Space Returns a string that consists of a specified number of spaces

StrComp Compares two strings and returns a value that represents the
result of the comparison

String Returns a string that contains a repeating character of a specified
length

StrReverse Reverses a string

UCase Converts a specified string to uppercase

 330

Other Functions

Function Description

CreateObject Creates an object of a specified type

Eval Evaluates an expression and returns the result

GetLocale Returns the current locale ID

GetObject Returns a reference to an automation object from a file

GetRef Allows you to connect a VBScript procedure to a DHTML
event on your pages

InputBox Displays a dialog box, where the user can write some
input and/or click on a button, and returns the contents

IsEmpty Returns a Boolean value that indicates whether a
specified variable has been initialized or not

IsNull Returns a Boolean value that indicates whether a
specified expression contains no valid data (Null)

IsNumeric Returns a Boolean value that indicates whether a
specified expression can be evaluated as a number

IsObject Returns a Boolean value that indicates whether the
specified expression is an automation object

LoadPicture Returns a picture object. Available only on 32-bit
platforms

MsgBox Displays a message box, waits for the user to click a
button, and returns a value that indicates which button the
user clicked

RGB Returns a number that represents an RGB color value

Round Rounds a number

ScriptEngine Returns the scripting language in use

ScriptEngineBuildVer
sion

Returns the build version number of the scripting engine
in use

ScriptEngineMajorVer
sion

Returns the major version number of the scripting engine
in use

ScriptEngineMinorVe
rsion

Returns the minor version number of the scripting engine
in use

SetLocale Sets the locale ID and returns the previous locale ID

TypeName Returns the subtype of a specified variable

VarType Returns a value that indicates the subtype of a specified
variable

 331

Annex 2 VBScript naming conventions

Object type Prefix Example

3D Panel pnl pnlGroup

Animated button ani aniMailBox

Check box chk chkReadOnly

Combo box, drop-down list
box

cbo cboEnglish

Command button cmd cmdExit

Common dialog dlg dlgFileOpen

Frame fra fraLanguage

Horizontal scroll bar hsb hsbVolume

Image img imgIcon

Label lbl lblHelpMessage

Line lin linVertical

List Box lst lstPolicyCodes

Spin spn spnPages

Text box txt txtLastName

Vertical scroll bar vsb vsbRate

Slider sld sldScale

 332

Annex 3 Character sets and RGB color

A. Character entities

The Most Common Character Entities:

Result Description Entity Name Entity Number

 non-breaking space

< less than < <

> greater than > >

& ampersand & &

" quotation mark " "

' apostrophe ' (does not work in IE) '

Some Other Commonly Used Character Entities:

Result Description Entity Name Entity Number

¢ cent ¢ ¢

£ pound £ £

¥ yen ¥ ¥

§ section § §

© copyright © ©

® registered trademark ® ®

× multiplication × ×

÷ division ÷ ÷

B. ISO Latin-1 Character Set

Character Decimal
code

Named entity Description

--- � --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- 	 --- Horizontal tab

 --- Line feed

--- --- Unused

---  --- Unused

---  --- Carriage Return

 333

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

--- --- Unused

 --- Space

! ! --- Exclamation mark

" " " Quotation mark

--- Number sign

$ $ --- Dollar sign

% % --- Percent sign

& & & Ampersand

' ' --- Apostrophe

((--- Left parenthesis

)) --- Right parenthesis

* * --- Asterisk

+ + --- Plus sign

, , --- Comma

- - --- Hyphen

. . --- Period (fullstop)

/ / --- Solidus (slash)

0 0 --- Digit 0

1 1 --- Digit 1

2 2 --- Digit 2

3 3 --- Digit 3

4 4 --- Digit 4

5 5 --- Digit 5

6 6 --- Digit 6

7 7 --- Digit 7

8 8 --- Digit 8

9 9 --- Digit 9

: : --- Colon

; ; --- Semicolon

< < < Less than

 334

= = --- Equals sign

> > > Greater than

? ? --- Question mark

@ @ --- Commercial at

A A --- Capital A

B B --- Capital B

C C --- Capital C

D D --- Capital D

E E --- Capital E

F F --- Capital F

G G --- Capital G

H H --- Capital H

I I --- Capital I

J J --- Capital J

K K --- Capital K

L L --- Capital L

M M --- Capital M

N N --- Capital N

O O --- Capital O

P P --- Capital P

Q Q --- Capital Q

R R --- Capital R

S S --- Capital S

T T --- Capital T

U U --- Capital U

V V --- Capital V

W W --- Capital W

X X --- Capital X

Y Y --- Capital Y

Z Z --- Capital Z

[[--- Left square bracket

\ \ --- Reverse solidus
(backslash)

]] --- Right square bracket

^ ^ --- Caret

_ _ --- Horizontal bar
(underscore)

` ` --- Acute accent

a a --- Small a

b b --- Small b

c c --- Small c

d d --- Small d

e e --- Small e

f f --- Small f

g g --- Small g

h h --- Small h

i i --- Small i

 335

j j --- Small j

k k --- Small k

l l --- Small l

m m --- Small m

n n --- Small n

o o --- Small o

p p --- Small p

q q --- Small q

r r --- Small r

s s --- Small s

t t --- Small t

u u --- Small u

v v --- Small v

w w --- Small w

x x --- Small x

y y --- Small y

z z --- Small z

{ { --- Left curly brace

| | --- Vertical bar

} } --- Right curly brace

~ ~ --- Tilde

• --- Unused

€ € --- Unused

 Nonbreaking space

¡ ¡ ¡ Inverted exclamation

¢ ¢ ¢ Cent sign

£ £ £ Pound sterling

¤ ¤ ¤ General currency sign

¥ ¥ ¥ Yen sign

¦ ¦ ¦ or
&brkbar;

Broken vertical bar

§ § &§ Section sign

¨ ¨ &&um; or
&¨

Diæresis / Umlaut

© © &© Copyright

ª ª &ª Feminine ordinal

« « &« Left angle quote,
guillemot left

¬ ¬ &¬ Not sign

 ­ ­ Soft hyphen

® ® ® Registered trademark

¯ ¯ ¯ or
&hibar;

Macron accent

° ° ° Degree sign

± ± ± Plus or minus

² ² ² Superscript two

³ ³ ³ Superscript three

 336

´ ´ ´ Acute accent

µ µ µ Micro sign

¶ ¶ ¶ Paragraph sign

· · · Middle dot

¸ ¸ ¸ Cedilla

¹ ¹ ¹ Superscript one

º º º Masculine ordinal

» » » Right angle quote,
guillemot right

¼ ¼ ¼ Fraction one-fourth

½ ½ ½ Fraction one-half

¾ ¾ ¾ Fraction three-fourths

¿ ¿ ¿ Inverted question mark

À À À Capital A, grave
accent

Á Á Á Capital A, acute
accent

Â Â Â Capital A, circumflex

Ã Ã Ã Capital A, tilde

Ä Ä Ä Capital A, diæresis /
umlaut

Å Å Å Capital A, ring

Æ Æ Æ Capital AE ligature

Ç Ç Ç Capital C, cedilla

È È È Capital E, grave
accent

É É É Capital E, acute
accent

Ê Ê Ê Capital E, circumflex

Ë Ë Ë Capital E, diæresis /
umlaut

Ì Ì Ì Capital I, grave accent

Í Í Í Capital I, acute accent

Î Î Î Capital I, circumflex

Ï Ï Ï Capital I, diæresis /
umlaut

Ð Ð Ð Capital Eth, Icelandic

Ñ Ñ Ñ Capital N, tilde

Ò Ò Ò Capital O, grave
accent

Ó Ó Ó Capital O, acute
accent

Ô Ô Ô Capital O, circumflex

Õ Õ Õ Capital O, tilde

Ö Ö Ö Capital O, diæresis /
umlaut

× × × Multiply sign

 337

Ø Ø Ø Capital O, slash

Ù Ù Ù Capital U, grave
accent

Ú Ú Ú Capital U, acute
accent

Û Û Û Capital U, circumflex

Ü Ü Ü Capital U, diæresis /
umlaut

Ý Ý Ý Capital Y, acute
accent

Þ Þ Þ Capital Thorn,
Icelandic

ß ß ß Small sharp s, German
sz

à à à Small a, grave accent

á á á Small a, acute accent

â â â Small a, circumflex

ã ã ã Small a, tilde

ä ä ä Small a, diæresis /
umlaut

å å å Small a, ring

æ æ æ Small ae ligature

ç ç ç Small c, cedilla

è è è Small e, grave accent

é é é Small e, acute accent

ê ê ê Small e, circumflex

ë ë ë Small e, diæresis /
umlaut

ì ì ì Small i, grave accent

í í í Small i, acute accent

î î î Small i, circumflex

ï ï ï Small i, diæresis /
umlaut

ð ð ð Small eth, Icelandic

ñ ñ ñ Small n, tilde

ò ò ò Small o, grave accent

ó ó ó Small o, acute accent

ô ô ô Small o, circumflex

õ õ õ Small o, tilde

ö ö ö Small o, diæresis /
umlaut

÷ ÷ ÷ Division sign

ø ø ø Small o, slash

ù ù ù Small u, grave accent

ú ú ú Small u, acute accent

û û û Small u, circumflex

ü ü ü Small u, diæresis /

 338

umlaut

ý ý ý Small y, acute accent

þ þ þ Small thorn, Icelandic

ÿ ÿ ÿ Small y, diæresis /
umlaut

To use one of the three characters in an HTML document, you must enter

its escape sequence instead:
< the escape sequence for <
> the escape sequence for >
& the escape sequence for &

Additional escape sequences support accented characters, such as:
ö a lowercase o with an umlaut: ö
ñ a lowercase n with a tilde: ñ
È an uppercase E with a grave accent: È

You can substitute other letters for the o, n, and E shown above. Visit the
World Wide Web Consortium for a complete list of special characters.

NOTE: Unlike the rest of HTML, the escape sequences are case sensitive. You
cannot, for instance, use < instead of <.

Character Entities for Special Symbols and BIDI Text:

C0 Controls and Basic Latin

" " " quotation mark, =apl quote, U0022 ISOnum

& & & ampersand, U0026 ISOnum

< < < less-than sign, U003C ISOnum

> > > greater-than sign, U003E ISOnum

Latin Extended-A

Œ &OElig Œ latin capital ligature oe, U0152 ISOlat2

œ &oelig œ latin small ligature oe, U0153 ISOlat2

Š &Scaron Š latin capital letter s with caron, U0160
ISOlat2

š &scaron š latin small letter s with caron, U0161 ISOlat2

Ÿ &Yuml Ÿ latin capital letter y with diaeresis, U0178
ISOlat2

Spacing Modifier Letters

ˆ &circ ˆ modifier letter circumflex accent, U02C6
ISOpub

˜ &tilde ˜ small tilde, U02DC ISOdia

General Punctuation

  &ensp   en space, U2002 ISOpub

  &emsp   em space, U2003 ISOpub

  &thinsp   thin space, U2009 ISOpub

‌ &zwnj ‌ zero width non-joiner, U200C NEW RFC
2070

‍ &zwj ‍ zero width joiner, U200D NEW RFC 2070

 339

‎ &lrm ‎ left-to-right mark, U200E NEW RFC 2070

‏ &rlm ‏ right-to-left mark, U200F NEW RFC 2070

– &ndash – en dash, U2013 ISOpub

— &mdash — em dash, U2014 ISOpub

‘ &lsquo ‘ left single quotation mark, U2018 ISOnum

’ &rsquo ’ right single quotation mark, U2019 ISOnum

‚ &sbquo ‚ single low-9 quotation mark, U201A NEW

“ &ldquo “ left double quotation mark, U201C ISOnum

” &rdquo ” right double quotation mark, U201D ISOnum

„ &bdquo „ double low-9 quotation mark, U201E NEW

† &dagger † dagger, U2020 ISOpub

‡ &Dagger ‡ double dagger, U2021 ISOpub

‰ &permil ‰ per mille sign, U2030 ISOtech

‹ &lsaquo ‹ single left-pointing angle quotation mark,
U2039 ISO proposed

› &rsaquo › single right-pointing angle quotation mark,
U203A ISO proposed

C. Additional Named Entities for HTML

Character Named entity Numeric
character
reference

Description

Latin Extended-B

ƒ &fnof ƒ latin small f with hook, =function,
=flavia, U0192 ISOtech

Greek

Α &Alpha Α greek capital letter alpha, U0391

Β &Beta Β greek capital letter beta, U0392

Γ &Gamma Γ greek capital letter gamma,
U0393 ISOgrk3

Δ &Delta Δ greek capital letter delta, U0394
ISOgrk3

Ε &Epsilon Ε greek capital letter epsilon,
U0395

Ζ &Zeta Ζ greek capital letter zeta, U0396

Η &Eta Η greek capital letter eta, U0397

Θ &Theta Θ greek capital letter theta, U0398
ISOgrk3

Ι &Iota Ι greek capital letter iota, U0399

Κ &Kappa Κ greek capital letter kappa,
U039A

Λ &Lambda Λ greek capital letter lambda,
U039B ISOgrk3

Μ &Mu Μ greek capital letter mu, U039C

Ν &Nu Ν greek capital letter nu, U039D

Ξ &Xi Ξ greek capital letter xi, U039E
ISOgrk3

 340

Ο &Omicron Ο greek capital letter omicron,
U039F

Π &Pi Π greek capital letter pi, U03A0
ISOgrk3

Ρ &Rho Ρ greek capital letter rho, U03A1

Σ &Sigma Σ greek capital letter sigma,
U03A3 ISOgrk3

Τ &Tau Τ greek capital letter tau, U03A4

Υ &Upsilon Υ greek capital letter upsilon,
U03A5 ISOgrk3

Φ &Phi Φ greek capital letter phi, U03A6
ISOgrk3

Χ &Chi Χ greek capital letter chi, U03A7

Ψ &Psi Ψ greek capital letter psi, U03A8
ISOgrk3

Ω &Omega Ω greek capital letter omega,
U03A9 ISOgrk3

a &alpha α greek small letter alpha, U03B1
ISOgrk3

b &beta β greek small letter beta, U03B2
ISOgrk3

g &gamma γ greek small letter gamma,
U03B3 ISOgrk3

d &delta δ greek small letter delta, U03B4
ISOgrk3

ε &epsilon ε greek small letter epsilon,
U03B5 ISOgrk3

ζ &zeta ζ greek small letter zeta, U03B6
ISOgrk3

η &eta η greek small letter eta, U03B7
ISOgrk3

θ &theta θ greek small letter theta, U03B8
ISOgrk3

ι &iota ι greek small letter iota, U03B9
ISOgrk3

κ &kappa κ greek small letter kappa, U03BA
ISOgrk3

λ &lambda λ greek small letter lambda,
U03BB ISOgrk3

μ &mu μ greek small letter mu, U03BC
ISOgrk3

ν &nu ν greek small letter nu, U03BD
ISOgrk3

ξ &xi ξ greek small letter xi, U03BE
ISOgrk3

ο &omicron ο greek small letter omicron,
U03BF NEW

p &pi π greek small letter pi, U03C0

 341

ISOgrk3

ρ &rho ρ greek small letter rho, U03C1
ISOgrk3

ς &sigmaf ς greek small letter final sigma,
U03C2 ISOgrk3

σ &sigma σ greek small letter sigma, U03C3
ISOgrk3

τ &tau τ greek small letter tau, U03C4
ISOgrk3

υ &upsilon υ greek small letter upsilon,
U03C5 ISOgrk3

φ &phi φ greek small letter phi, U03C6
ISOgrk3

χ &chi χ greek small letter chi, U03C7
ISOgrk3

ψ &psi ψ greek small letter psi, U03C8
ISOgrk3

ω &omega ω greek small letter omega,
U03C9 ISOgrk3

ϑ &thetasym ϑ greek small letter theta symbol,
U03D1 NEW

ϒ &upsih ϒ greek upsilon with hook symbol,
U03D2 NEW

ϖ &piv ϖ greek pi symbol, U03D6
ISOgrk3

General Punctuation

• &bull • bullet, =black small circle,
U2022 ISOpub

… &hellip … horizontal ellipsis, =three dot
leader, U2026 ISOpub

′ &prime ′ prime, =minutes, =feet, U2032
ISOtech

″ &Prime ″ double prime, =seconds,
=inches, U2033 ISOtech

‾ &oline ‾ overline, =spacing overscore,
U203E NEW

⁄ &frasl ⁄ fraction slash, U2044 NEW

Letterlike Symbols

℘ &weierp ℘ script capital P, =power set,
=Weierstrass p, U2118
ISOamso

ℑ &image ℑ blackletter capital I, =imaginary
part, U2111 ISOamso

ℜ &real ℜ blackletter capital R, =real part
symbol, U211C ISOamso

™ &trade ™ trade mark sign, U2122 ISOnum

ℵ &alefsym ℵ alef symbol, =first transfinite
cardinal, U2135 NEW

 342

Arrows

← &larr ← leftward arrow, U2190 ISOnum

↑ &uarr ↑ upward arrow, U2191 ISOnum

→ &rarr → rightward arrow, U2192 ISOnum

↓ &darr ↓ downward arrow, U2193
ISOnum

↔ &harr ↔ left right arrow, U2194 ISOamsa

↵ &crarr ↵ downward arrow with corner
leftward, =carriage return,
U21B5 NEW

⇐ &lArr ⇐ leftward double arrow, U21D0
ISOtech

⇑ &uArr ⇑ upward double arrow, U21D1
ISOamsa

⇒ &rArr ⇒ rightward double arrow, U21D2
ISOtech

⇓ &dArr ⇓ downward double arrow, U21D3
ISOamsa

⇔ &hArr ⇔ left right double arrow, U21D4
ISOamsa

Mathematical Operators

∀ &forall ∀ for all, U2200 ISOtech

∂ &part ∂ partial differential, U2202
ISOtech

∃ &exist ∃ there exists, U2203 ISOtech

∅ &empty ∅ empty set, =null set, =diameter,
U2205 ISOamso

∇ &nabla ∇ nabla, =backward difference,
U2207 ISOtech

∈ &isin ∈ element of, U2208 ISOtech

∉ ¬in ∉ not an element of, U2209
ISOtech

∋ &ni ∋ contains as member, U220B
ISOtech

∏ &prod ∏ n-ary product, =product sign,
U220F ISOamsb

∑ &sum − n-ary sumation, U2211
ISOamsb

− &minus − minus sign, U2212 ISOtech

∗ &lowast ∗ asterisk operator, U2217
ISOtech

√ &radic √ square root, =radical sign,
U221A ISOtech

∝ &prop ∝ proportional to, U221D ISOtech

∞ &infin ∞ infinity, U221E ISOtech

∠ &ang ∠ angle, U2220 ISOamso

∧ &and ⊥ logical and, =wedge, U2227

 343

ISOtech

∨ &or ⊦ logical or, =vee, U2228 ISOtech

∩ &cap ∩ intersection, =cap, U2229
ISOtech

∪ &cup ∪ union, =cup, U222A ISOtech

∫ &int ∫ integral, U222B ISOtech

∴ &there4 ∴ therefore, U2234 ISOtech

∼ &sim ∼ tilde operator, =varies with,
=similar to, U223C ISOtech

≅ &cong ≅ approximately equal to, U2245
ISOtech

≈ &asymp ≅ almost equal to, =asymptotic to,
U2248 ISOamsr

≠ &ne ≠ not equal to, U2260 ISOtech

≡ &equiv ≡ identical to, U2261 ISOtech

≤ &le ≤ less-than or equal to, U2264
ISOtech

≥ &ge ≥ greater-than or equal to, U2265
ISOtech

⊂ &sub ⊂ subset of, U2282 ISOtech

⊃ &sup ⊃ superset of, U2283 ISOtech

⊄ &nsub ⊄ not a subset of, U2284 ISOamsn

⊆ &sube ⊆ subset of or equal to, U2286
ISOtech

⊇ &supe ⊇ superset of or equal to, U2287
ISOtech

⊕ &oplus ⊕ circled plus, =direct sum, U2295
ISOamsb

⊗ &otimes ⊗ circled times, =vector product,
U2297 ISOamsb

⊥ &perp ⊥ up tack, =orthogonal to,
=perpendicular, U22A5 ISOtech

⋅ &sdot ⋅ dot operator, U22C5 ISOamsb

Miscellaneous Technical

⌈ &lceil ⌈ left ceiling, =apl upstile, U2308,
ISOamsc

⌉ &rceil ⌉ right ceiling, U2309, ISOamsc

⌊ &lfloor ⌊ left floor, =apl downstile, U230A,
ISOamsc

⌋ &rfloor ⌋ right floor, U230B, ISOamsc

⟨ &lang 〈 left-pointing angle bracket, =bra,
U2329 ISOtech

⟩ &rang 〉 right-pointing angle bracket,
=ket, U232A ISOtech

Geometric Shapes

◊ &loz ◊ lozenge, U25CA ISOpub

 344

Miscellaneous Symbols

♠ &spades ♠ black spade suit, U2660 ISOpub

♣ &clubs ♣ black club suit, =shamrock, U2663
ISOpub

♥ &hearts ♥ black heart suit, =valentine, U2665
ISOpub

♦ &diams ♦ black diamond suit, U2666 ISOpub

D. RGB Color codes

NAME RGB

Value
NAME RGB

Value

ALICEBLUE #F0F8FF ANTIQUEWHITE #FAEBD7

AQUA #00FFFF AQUAMARINE #7FFFD4

AZURE #F0FFFF BEIGE #F5F5DC

BISQUE #FFE4C4 BLACK #000000

BLANCHEDALMOND #FFEBCD BLUE #0000FF

BLUEVIOLET #8A2BE2 BROWN #A52A2A

BURLYWOOD #DEB887 CADETBLUE #5F9EA0

CHARTREUSE #7FFF00 CHOCOLATE #D2691E

CORAL #FF7F50 CORNFLOWER #6495ED

CORNSILK #FFF8DC CRIMSON #DC143C

CYAN #00FFFF DARKBLUE #00008B

DARKCYAN #008B8B DARKGOLDENROD #B8860B

DARKGRAY #A9A9A9 DARKGREEN #006400

DARKKHAKI #BDB76B DARKMAGENTA #8B008B

DARKOLIVEGREEN #556B2F DARKORANGE #FF8C00

DARKORCHID #9932CC DARKRED #8B0000

DARKSALMON #E9967A DARKSEAGREEN #8FBC8B

DARKSLATEBLUE #483D8B DARKSLATEGREY #2F4F4F

DARKTURQUOISE #00CED1 DARKVIOLET #9400D3

DEEPPINK #FF1493 DEEPSKYBLUE #00BFFF

DIMGRAY #696969 DODGERBLUE #1E90FF

FIREBRICK #B22222 FLORALWHITE #FFFAF0

FORESTGREEN #228B22 FUCHIA #FF00FF

GAINSBORO #DCDCDC GHOSTWHITE #F8F8FF

GOLD #FFD700 GOLDENROD #DAA520

GRAY #808080 GREEN #008000

GREENYELLOW #ADFF2F HONEYDEW #F0FFF0

HOTPINK #FF69B4 INDIANRED #CD5C5C

INDIGO #4B0082 IVORY #FFFFF0

KHAKI #F0E68C LAVENDER #E6E6FA

LAVENDERBLUSH #FFF0F5 LAWNGREEN #7CFC00

LEMONCHIFFON #FFFACD LIGHTBLUE #ADD8E6

LIGHTCORAL #F08080 LIGHTCYAN #E0FFFF

LIGHTGOLDENRODYELLOW #FAFAD2 LIGHTGREEN #90EE90

LIGHTGREY #D3D3D3 LIGHTPINK #FFB6C1

LIGHTSALMON #FFA07A LIGHTSEAGREEN #20B2AA

LIGHTSKYBLUE #87CEFA LIGHTSLATEGRAY #778899

LIGHTSTEELBLUE #B0C4DE LIGHTYELLOW #FFFFE0

 345

LIME #00FF00 LIMEGREEN #32CD32

LINEN #FAF0E6 MAGENTA #FF00FF

MAROON #800000 MEDIUMAQUAMARINE #66CDAA

MEDIUMBLUE #0000CD MEDIUMORCHID #BA55D3

MEDIUMPURPLE #9370DB MEDIUMSEAGREEN #3CB371

MEDIUMSLATEBLUE #7B68EE MEDIUMSPRINGGREEN #00FA9A

MEDIUMTURQUOISE #48D1CC MEDIUMVIOLETRED #C71585

MIDNIGHTBLUE #191970 MINTCREAM #F5FFFA

MISTYROSE #FFE4E1 MOCCASIN #FFE4B5

NAVAJOWHITE #FFDEAD NAVY #000080

OLDLACE #FDF5E6 OLIVE #808000

OLIVEDRAB #6B8E23 ORANGE #FFA500

ORANGERED #FF4500 ORCHID #DA70D6

PALEGOLDENROD #EEE8AA PALEGREEN #98FB98

PALETURQUOISE #AFEEEE PALEVIOLETRED #DB7093

PAPAYAWHIP #FFEFD5 PEACHPUFF #FFDAB9

PERU #CD853F PINK #FFC0CB

PLUM #DDA0DD POWDERBLUE #B0E0E6

PURPLE #800080 RED #FF0000

ROSYBROWN #BC8F8F ROYALBLUE #4169E1

SADDLEBROWN #8B4513 SALMON #FA8072

SANDYBROWN #F4A460 SEAGREEN #2E8B57

SEASHELL #FFF5EE SIENNA #A0522D

SILVER #C0C0C0 SKYBLUE #87CEEB

SLATEBLUE #6A5ACD SLATEGRAY #708090

SNOW #FFFAFA SPRINGGREEN #00FF7F

STEELBLUE #4682B4 TAN #D2B48C

TEAL #008080 THISTLE #D8BFD8

TOMATO #FF6347 TURQUOISE #40E0D0

VIOLET #EE82EE WHEAT #F5DEB3

WHITE #FFFFFF WHITESMOKE #F5F5F5

YELLOW #FFFF00 YELLOWGREEN #9ACD32

 346

 347

References

1. [AaBr-09] Al Anderson, Ryan

Benedetti,
Head First Networking, O'Reilly
Media, Inc., 2009, ISBN 978-0-
596-52155-4

2. [AvDg03] Vasile Avram,
Gheorghe Dodescu

Informatics: Computer
Hardware and Programming in
Visual Basic, Ed. Economică,
Bucureşti, 2003, 2007 (Chp. 1.6,
1.7, 1.8, 7.11.3 and 7.11.4)

3. [Av-01] Vasile Avram Sisteme de Calcul si
Operare/Computer Systems and
Operating Systems, , Editura
Dacia Europa Nova, vol. 1 -
2000, vol. 2 - 2001

4. [AvDg-97] Vasile Avram,
Gheorghe Dodescu

General Informatics, by Vasile
Avram and Gheorghe Dodescu,
Editura Economica, 1997

5. [BIS-TDM] Dave Chaffey, Paul
Bocij, Andrew
Greasley, Simon
Hickie

Business Information Systems-
Technology, Development and
Management for the e-business,
Prentice Hall, London, second
edition, 2003

6. [BF01] Benjamin Faraggi Architectures marchandes et
portails B to B, Ed. DUNOD,
Paris, 2001

7. [CheRo] Chesbrough, Henry
and Rosenbloom,
Richard

The role of the business model
in capturing value from
innovation: evidence from Xerox
Corporation’s technology spin-
off companies. Industrial and
Corporate Change, 11, no. 3
(June 2002), 529 – 555.

8. [DgAv05] Gheorghe Dodescu,
Vasile Avram

Informatics: Operating Systems
and Application Software, Ed.
Economică, Bucureşti, 2005
(Chp. 10.1, 10.2 and 10.3)

9. [DMVA] Daniel A. Menascé,
Virgilio A. F. Almeida

Scaling for E-Business
Prentice Hall, 2000

 348

10. [DOS_03] Daconta, Michael C.,
Leo J. Obrst, and
Kevin T. Smith.

The Semantic Web: A Guide to
the Future of XML, Web
Services, and Knowledge
Management. John Wiley &
Sons. © 2003. Books24x7.
<http://common.books24x7.com
/book/id_6073

11. [HKSU] Chris Hart, John
Kauffman, David
Sussman, Chris
Ullman

Beginning ASP.NET 2.0 with
C#, Wrox Press 2006

12. [JLMT] Jerri Ledford, Mary E.
Tyler

Google™ Analytics 2.0, John
Wiley & Sons, August 27, 2007,
ISBN-13: 978-0-47017501-9

13. [KLJL] Kenneth C. Laudon,
Jane P. Laudon

Essentials of Management
Information Systems –
Managing the Digital Firm,
Prentice Hall, fifth edition, 2003

14. [LCT] Lijun Mei, W.K. Chan,
T.H. Tse

A Tale of Clouds: Paradigm
Comparisons and Some
Thoughts on Research Issues,
2008 IEEE Asia-Pacific Services
Computing Conference 978-0-
7695-3473-2/08 $25.00 © 2008
IEEE DOI
10.1109/APSCC.2008.168

15. [Lowe-05] Doug Lowe Networking All-in-One Desk
Reference for Dummies, 2nd
Edition, John Wiley & Sons ©
2005 (http://www.acm.com)

16. [MNSS] Todd Miller, Matthew
L. Nelson, Stella Ying
Shen and Michael J.
Shaw

e-Business Management
Models: A Services Perspective
and Case Studies, Revere
Group

17. [OLS07] Phillip Olson et al PHP manual,
http://www.php.net/docs.php,
2007

18. [OPT] A. Ostenwalder, Y.
Pigneur, and C.L.
Tucci

Communications of AIS, Volume
15, Article 4 Clarifying Business
Models: Origins, Present, and
Future of the Concept by
http://www.businessmodeldesig
n.com/ publications/ Preprint
Clarifying Business Models
Origins, Present, and Future of
the Concept.pdf

http://acm.books24x7.com/books.asp?imprintid=284
http://www.acm.com/
http://www.php.net/docs.php
http://www.businessmodeldesign.com/%20publications/%20Preprint%20Clarifying%20Business%20Models%20Origins,%20Present,%20and%20Future%20of%20the%20Concept.pdf
http://www.businessmodeldesign.com/%20publications/%20Preprint%20Clarifying%20Business%20Models%20Origins,%20Present,%20and%20Future%20of%20the%20Concept.pdf
http://www.businessmodeldesign.com/%20publications/%20Preprint%20Clarifying%20Business%20Models%20Origins,%20Present,%20and%20Future%20of%20the%20Concept.pdf
http://www.businessmodeldesign.com/%20publications/%20Preprint%20Clarifying%20Business%20Models%20Origins,%20Present,%20and%20Future%20of%20the%20Concept.pdf
http://www.businessmodeldesign.com/%20publications/%20Preprint%20Clarifying%20Business%20Models%20Origins,%20Present,%20and%20Future%20of%20the%20Concept.pdf

 349

19. [PG-07] Petter Gottschalk Business Dynamics in
Information Technologyby IGI
Publishing © 2007

20. [RFC 1630] T. Berners-Lee RFC 1630 - Universal Resource
Identifiers in WWW, Network
Working Group, CERN, June
1994

21. [RFC3986] T. Berners-Lee
W3C/MIT, R. Fielding
Day Software, L.
Masinter Adobe
Systems

Uniform Resource Identifier
(URI): Generic Syntax, January
2005

22. [RRSD] Robert
Reinhardt, Snow
Dowd

Macromedia Flash 8 Bible, John
Wiley & Sons © 2006

23. [SS05] Steve Schafer Web Standards Programmer's
Reference: HTML, CSS,
JavaScript, Perl, Python, and
PHP Wrox Press © 2005

24. [Tan-02] Andrew S.
Tanenbaum

Computer Networks, Fourth
Edition, Prentice Hall PTR, 2002

25. [WV-01] Weill P., Vitale M. R. Place to space: Migrating to e-
business models, Harvard
Business School Press, Boston,
2001

26. [W3C] www.w3c.org World Wide Web Consortium,
Web standards collection

27. [MSDN] Microsoft Press Microsoft Developer Network -
VBScript

28. [MSTcN] Microsoft TechNet Introduction to Windows Peer-
to-Peer Networking,
www.microsoft.com

29. [W3C] World Wide Web Consortium, Web standards collection,
www.w3c.org

30. [IEEE-802.11] IEEE Standard for Information technology
Telecommunications and information exchange between systems, Local
and metropolitan area networks, Specific requirements, Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Std 802.11-2007 (Revision ofIEEE Std 802.11-
1999), 12 June 2007,
http://standards.ieee.org/getieee802/download/802.11-2007.pdf

31. [IEEE] RFCs – Request For Comment – protocol standards,
www.ieee.org

32. [Google] http://www.google.com/analytics Google Analitics

33. [BROCADE] Communication, www.brocade.com

34. [IBM] Hardware and software, www.ibm.com

http://www.microsoft.com/
http://www.w3c.org/
http://www.ieee.org/
http://www.google.com/analytics
http://www.brocade.com/
http://www.ibm.com/

 350

35. [IBM-09] Seeding the Clouds: Key Infrastructure Elements for Cloud
Computing, www.ibm.com

36. [INTEL] Microprocessors, www.intel.com

37. [HP] Hardware, www.hp.com

38. [CISCO] Communication devices, www.cisco.com

39. [SUN] Hardware and software, www.sun.com

40. [SSL] SSL specification, http://www.openssl.org , www.modssl.org

41. E-commerce business models http://www.iusmentis.com
http://www.iusmentis.com/business/ecommerce/businessmodels/

42. http://digitalenterprise.org/models/models.html Professor Michael
Rappa, North Carolina State University

43. http://reference.sitepoint.com/css/css SitePoint CSS reference

44. [W3schools] Tutorials for HTML, XHTML, XML, CSS, JavaScript,
VBScript, Ajax, http://www.w3schools.com

45. [avrams.ro] Internet Technologies for Business, Lecture Notes,
Handouts, and Examples. The site pages are implementations of
different topics, http://www.avrams.ro

http://www.ibm.com/
http://www.intel.com/
http://www.hp.com/
http://www.cisco.com/
http://www.sun.com/
http://www.openssl.org/
http://www.modssl.org/
http://www.iusmentis.com/
http://digitalenterprise.org/models/models.html
http://reference.sitepoint.com/css/css
http://www.w3schools.com/
http://www.avrams.ro/

 351

Annexes .. 327

Annex 1. List of VBScript intrinsic functions 327

Annex 2 VBScript naming conventions ... 331

Annex 3 Character sets and RGB color ... 332

A. Character entities ... 332

B. ISO Latin-1 Character Set ... 332

C. Additional Named Entities for HTML 339

D. RGB Color codes ... 344

References .. 347

	Front-covers.pdf
	Contents.pdf
	C1-IntroductionToNetorks-X5.pdf
	1 INTRODUCTION TO COMPUTER NETWORKS
	1.1 LAN's & WAN's
	1.2 Some network and internetwork components
	1.3 The communication process
	1.4 Communication medium
	1.5 Topologies and networks
	Complex LANs

	1.6 Cooperative processing
	1.7 Communication models
	OSI MODEL
	IEEE MODEL

	1.8 Communications protocols
	1.9 Standards
	1.10 Understanding Internetwork Tools
	How bridges and routers work
	Transparent bridge
	Translating bridge
	Source routing bridges
	Routers

	C2-InternetArchitecture-X5.pdf
	2 Internet – ARCHITECTURE, OFFERED SERVICES, COMMUNICATION AND NAVIGATION
	2.1 How WANs (and Internet) are organized
	2.1.1 The Logical Structure of Web Servers
	2.1.2 The “transport” protocols
	2.1.3 The IP addressing
	2.1.4 The DNS
	2.1.5 URL
	URI – Uniform Resource Identifiers

	2.2 Service protocols
	2.2.1 TCP/IP - HTTP
	2.2.2 SMTP/POP
	2.2.3 FTP
	Using FTP line commands

	2.2.4 NNTP
	2.2.5 RPC and Multimedia
	2.2.6 Applications gateways
	2.2.7 Applets
	2.2.8 Wireless Web
	2.3 Web pages, sites and Web browsers – an introduction
	Web pages and web site - definitions
	Web browsers
	Finding information on the Internet

	2.4 Web services – an introduction

	C3-BusinessCategoriesandModels-X5.pdf
	3 BUSINESS CATEGORIES AND MODELS IN Internet
	3.1 Business Categories
	The e-business – e-commerce relationships
	Business categories

	3.2 Business Models
	3.2.1 Classification of e-business models
	3.2.2 Common of Internet e-business models
	3.3 The E-Commerce Development And Functional Architecture
	The e-commerce/e-business development
	The evolution of e-commerce
	The functional architecture for e-commerce
	Internet vulnerabilities and security

	C4-DocumentsAndWebsites-X5.pdf
	4 DOCUMENTS AND WEB SITES – STRUCTURE, DESCRIPTION LANGUAGES
	4.1 Web pages and Web sites
	4.2 Static (HTML) Architecture
	4.3 DHTML Architecture
	4.3.1 CSS - Cascading Style Sheets
	4.3.2 Scripts
	4.3.3 Flash
	4.3.4 Ajax
	4.4 High Level Languages based Architecture
	4.4.1 Java
	4.4.2 XML – eXtensible Markup Language
	4.4.2.1 Differences between XML, HTML, and SGML
	XML - SGML Comparison. SGML was build for the purpose of storing documents in large centralized libraries while XML is designated to be used in a distributed environment and for storing documents while ensuring the interoperability by intermediate of ...

	4.4.2.2 XSL: the formatting language of XML
	4.4.2.3 XQL – the extended query language
	4.4.2.4 Database Links
	Storage of XML documents in databases. XML is adapted to the storage of any kind of documents such as illustrated technical manuals, e-mail, programs, reports etc. The XML stored data are independent on the hardware, software, and used access methods,...
	Document Object Model (DOM). The XML/HTML navigator implements an application interface API that offers a programmable access to displayed data. The standard W3C defines an object-oriented API allowing an application program to access the tree formed ...
	Access to DHTML documents. For an object oriented programming language the document is an object composed by other objects. When API accessed by the XML interpreter it exists a gateway object that allows access another object, the document, whose elem...

	4.5 Dynamic Pages Architecture
	4.6 Advanced Management Architecture
	4.6.1 Statistic utilities
	4.6.2 Cookie
	4.6.3 Network traffic analysis
	4.7 Multi-tier (three tiers) Architecture
	4.7.1 Client-Server Infrastructure
	4.7.2 Application Server

	C5-HTML-X5-VDM-AlinaI.pdf
	5 DEFINING AND STRUCTURING WEB PAGES USING HTML
	5.1 HTML – An introduction
	5.1.1 The Structure of a HTML Page
	5.1.2 The HTML Page Head Tag

	5.2 Text emphasizing elements
	5.2.1 Headings
	5.2.2 Spaces
	5.2.3 Paragraphs
	5.2.4 Preformatted Text
	5.2.5 Character Entities
	5.2.6 Text Formatting
	5.2.7 Horizontal Rule
	5.2.8 Lists

	5.3 Hyperlinks and pictures
	5.3.1 Hyperlinks
	5.3.2 Images

	5.4 HTML elements for defining layout of web pages
	5.4.1 Tables
	5.4.2 Horizontal Rule
	5.4.3 Frames
	5.4.4 Colors

	5.5 Styles and CSS
	5.6 Forms in HTML
	5.7 Differences between HTML and XHTML

	C6-VBScript-X5.pdf
	6 VBScript
	6.1 Introduction
	6.2 Using and placing VBScripts in a HTML page
	6.2.1 VBScript in the body of the HTML file
	6.2.2 VBScript in heading
	6.2.3 Inline VBScript

	6.3 Variables and Constants
	6.3.1 Variables
	6.3.2 Constants

	6.4 Assignments and expressions
	Assignments
	Expressions

	6.5 Procedures and functions
	6.6 Decisional (conditional/alternative) statements
	6.7 Repeating Structure
	Conditional Loop with Condition Evaluated First
	Conditional Loop with Condition Evaluated After

	6.8 Inserting Objects in HTML pages
	6.9 Input Output Operations with InputBox and MsgBox
	6.10 Combining VBScript and Forms

	C7-JavaScript-X5-DianA.pdf
	7 JavaScript
	7.1 JavaScript – An introduction
	7.2 Using and placing JavaScripts in a HTML page
	7.2.1 JavaScript in the body of the HTML file
	7.2.2 JavaScript in heading
	7.2.3 External JavaScripts

	7.3 Defining and using variables
	7.4 Methods
	7.5 Document Object Model (DOM)
	7.6 Using and Defining Function
	7.7 Asignments and expressions
	7.7.1 Arithmetic Expression
	7.7.2 Logical Expression
	7.7.3 String Expression

	7.8 Conditional Execution
	7.9 Decision sentences
	7.10 Popup Boxes
	7.11 Cycles
	7.12 Using events to trigger script execution
	7.13 Handling errors
	7.14 Commented samples

	Anexe-Referinte-X5.pdf
	back-cover.png

