
INFORMATICS: Computer Hardware and Programming in Visual Basic

81

Chapter 3 THE REPRESENTATION OF PROCESSING ALGORITHMS 83	

3.1 Concepts ... 83	

3.1.1 The Stages of Solving a Problem by Means of Computer .. 84	

The General Steps for Preparing a Program ... 87	

Executing a Program .. 89	

3.1.2 The Description of Algorithms by Means of Logical Diagrams (Flowcharts) 90	

Process, Program and Document Flowcharts ... 90	

The Basic Symbols Used in Drawing Program Flowcharts ... 91	

Fundamental Structures Used in Algorithm Representation .. 92	

3.2 Sequential Structure ... 92	

3.2.1 Assignments .. 93	

3.2.2 Literals ... 98	

3.2.3 Variables and Constants Declarations ... 99	

3.2.4 Input/Output Operations by Using InputBox and MsgBox Functions 103	

3.3 Alternative Structure (Decision) .. 106	

3.4 Repeating Structure .. 115	

3.5 Commented Samples .. 124	

THE REPRESENTATION OF PROCESSING ALGORITHMS

82

INFORMATICS: Computer Hardware and Programming in Visual Basic

83

Chapter 3 THE REPRESENTATION OF PROCESSING
ALGORITHMS

3.1 Concepts

Algorithm is a fundamental concept of computer programming. An algorithm is
represented as a set of rules (Ri) which can be applied to the same class of problems (CPi) in
order to obtain the solution (S) by means of some sequential unique operations (OSi) started,
eventually, with some initial conditions (CIi): S=Ri(OSi(CPi([CIi]))).

An algorithm is a prescribed set of well-defined instructions for solving a problem in a
finite number of steps. In computing, algorithms are essential because they serve as
systematic procedures that computers require [LK.99]. Thus, we can say that an algorithm is a
solution of certain kind of problems that are referenced by the term computational or
algorithmic problem.

There are many reasons for using algorithms from which at least the following three
are very important:

- Efficiency – for certain types of problems resources have found over the time
efficient ways for solving and implementing them. They exist also as procedures
or functions in libraries usable in many programming languages;

- Abstraction – an algorithm provides a level of abstraction in solving problems.
Generally every complex problem can be decomposed into simpler ones for which
known algorithms exists;

- Reusability – algorithms are generally reusable for many different situations.

A program is a set of instructions written in a language designed to make a computer
perform a series of specific tasks. The instructions tell computers exactly what to do and
exactly when to do it. A programming language is a set of grammar rules, characters, symbols
and words – the vocabulary – in which those instructions are written. Programming is the
designing and writing programs.

A computer program – does no matter if is a single procedure or function, utility tool,
an application or the operating system itself – is nothing else than a list of instructions that the
microprocessor (or generally processor) can execute. In turn, an instruction is a specific
pattern of bits representing a numeric code. The computer sends to the microprocessor the list
of instructions that forms the program code, one by one. At receiving of an instruction the
microprocessor sees from the instruction code what function is to be done and executes the
corresponding actions. All the numeric codes allowed by a microprocessor as instructions
form the machine language. The pattern of bits representing instructions is no easy to be
manipulated as such by humans. For that reason they represented in a human meaningful

THE REPRESENTATION OF PROCESSING ALGORITHMS

84

form. The representation of instructions in a human meaningful form is called programming
language.

Any algorithm must have the following properties:
• Generality – the algorithms must solve a class of problems not a particular one;
• Finality – the algorithm must find a solution in a finite number of steps;
• Clarity – the algorithm must specify all steps that must be realized to obtain a correct

solution of the problem.
The problem solving process starts with the problem specification and ends with a

concrete (and correct) program. The steps to do in the problem solving process may be:
problem definition, problem analysis, algorithm development, coding, program testing and
debugging, and documentation.

3.1.1 The Stages of Solving a Problem by Means of Computer

The stages of analysis, design, programming, implementation, and operation of an

information system forms the life cycle of the system as described in §1.8. Here we briefly
describe the steps in problem solving process by using a programming environment (it can
allow the “around” application programming by the possibility of generating programs from
general templates, for example) and by considering only a specific process from the whole
system. In this context the stages can be:

1st. Defining/Specifying the problem [Theme] - by answering to questions as: What the
computer program do? What tasks will it perform? What kind of data will it use, and where
will get its data from? What will be the output of the program? How will the program interact
with the computer user? Specifying the problem requirements forces you to state the problem
clearly and unambiguously and to gain a clear understanding of what is required for its
solution. Your objective is to eliminate unimportant aspects and to focus on the root problem,
and this may not be as easy as it sound.

2nd. Analyzing the problem [Analysis] involves identifying the problem (a) inputs, which is
the data you have to work with; (b) outputs, the desired results; and (c) any additional
requirements or constraints on the solution. At this stage you should also determine the
required format in which the results should be displayed (for example, as a table with specific
columns, as a card with predefined items etc) and develop a list of problem constants and
variables and their relationships. At this level, the relationships between variables can be
expressed as formulas.

3rd. Algorithm development: find an algorithm for its solution [Design]. Designing the
algorithm to solve the problem requires you to write step-by-step procedure – the algorithm –
and then verify that the algorithm solves the problem as intended. Writing the algorithm is
often the most difficult part of the problem-solving process. Don’t attempt to solve every
detail of the problem initially; instead, discipline yourself to use a top-down design. In a top-
down design (also called divide and conquer), you first list the major steps, or sub-problems,

INFORMATICS: Computer Hardware and Programming in Visual Basic

85

that need to be solved, then solve the original problem by solving each of its sub-problems.
For example, most computer algorithms consist of the following sub-problems:

1 - read the data;
2 - perform the computations;
3 - display the results.

Once you know the sub-problems, you can attack each one individually. For example,

the step 2, called “perform the computations”, may need to be broken down in more detailed
lists of steps (think to salary computation: each perceived tax means other computation
formula). This process is called algorithm-refinements.

The development can be expressed as:

• pseudocode – a narrative description of the flow and logic of the intended program,
written in plain language that expresses each step of the algorithm. For example, the
problem is to write a program that will reverse all of the letters in any chunk of text
provided to the program. The algorithm to solve that problem can be described in
pseudo-code as:

01 Obtain the original text (or string) from the user.
02 If the user didn't supply any content, then signal that and quit now.
03 Prepare a destination for the reversed string, empty for now.
04 Repeat the following sequence [steps 5 to 7] until the original string is empty:
05 Copy the last character from the remaining original string.
06 Put that character onto the end of the destination string.
07 Shorten the original string, dropping the last character.
08 [End of repeat section]
09 Show to the user the original and destination string.

• flowchart - a graphical representation that uses graphic symbols and arrows to express

the algorithms. The representation by flowchart for the reverse string solution can be:

THE REPRESENTATION OF PROCESSING ALGORITHMS

86

After you write the algorithm you must realize step-by-step simulation of the computer
execution of the algorithm in a “so called” desk-check process (verifying the algorithm).
4th. Coding (or programming): is the process of translating the algorithm into the syntax of a
given programming language [Programming]. You must convert each algorithm step into one
or more statements in a programming language.
The implementation of the reverse string algorithm in Visual Basic .NET (only the subroutine
corresponding) can be:
 Private Sub ReverseStringToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles ReverseStringToolStripMenuItem.Click
0: Dim originalText As String, finalText As String, oneCharacter As String, preservedText As String
1: originalText = InputBox("Type text to reverse.")
2: If (Len(originalText) = 0) Then MsgBox("Empty string supplied. No Action!", vbOKOnly + vbInformation) : End
3: finalText = ""
 preservedText = originalText
4: Do While (originalText <> "")
5: oneCharacter = Microsoft.VisualBasic.Right(originalText, 1)
6: finalText = finalText & oneCharacter
7: originalText = Microsoft.VisualBasic.Left(originalText, _
 Len(originalText) - 1)
8: Loop
9: MsgBox("The original string is:" & preservedText & Chr(10) & Chr(13) & "The reverse is: " & finalText)
 End Sub
End Class

INFORMATICS: Computer Hardware and Programming in Visual Basic

87

5th. Testing and debugging:

• testing means running the program, executing all its instructions/functions, and testing
the logic by entering sample data to check the output;

• debugging is the process of finding and correcting program code mistakes:
- syntax errors – identified, generally, at interpreting/compiling time; a syntax
error occurs when your code violates one or more grammar rules of the used
programming language. In VB environment the syntax errors signaled in the
moment they produced by the VB interpreter.
- run-time errors – are detected and displayed by the computer during the
execution of a program. A run-time error occurs when the program directs the
computer to perform an invalid operation, such as dividing a number by zero or
manipulating undefined or invalid data;
- logic errors (or so called bugs) – identified, generally, at run time occurs when a
program follows a faulty algorithm. Because logic errors usually do not cause run-
time errors and do not display error message they are very difficult to detect.

• field testing is realized by users that operate the software with the purpose of locating
problems. The main purpose of field testing is verifying the program in order to
eliminate the logic errors.

6th. Documenting the program by:

• internal documentation – the instructions and comments within the program itself. In
VB programs the comments are placed by using the Rem command, as a separate line
or preceded by the colon (:) character as a multi command line or ‘ (single apostrophe)
as the inline comment;

• external documentation - the printed set of instructions (the user’s manual)
describing how to operate the program (it can be also on-line documentation).

7th. Integrate the program in the data process flow (Implementation) and use the program
to solve problems [Exploitation]. In that step the programmer must maintain and update the
program, this means to modify the program to remove previously undetected errors and to
keep it up to date as government regulations or company policies changes.

 Before the computer can execute an assembly or a high-level language program, the
programmer must enter the sentences of the program as a so called source program into the
computer and the computer must store it in executable form in memory (expressed as machine
language sentences). Several system programs, such as editors, compilers or interpreters,
linkers etc assist with this task.

The General Steps for Preparing a Program

The algorithm found for a problem is ‘translated’ (coded) into a computer program by
using a programming language (usually a high level one). The text of the program is entered
into the computer’s memory by typing it in from the keyboard, reading from other storage

THE REPRESENTATION OF PROCESSING ALGORITHMS

88

devices (hard drive, memory stick, magnetic tape, etc.), receiving along the communication
channels from other networked devices, etc. This program text, expressed in terms of
sentences of a programming language, forms the so called source program (source code). To
be executable for the processor, that executes and understands only the machine language, our
source program goes through a number of transformations (syntactic and semantic analysis,
translations, link editing etc.) that allows be expressed in the machine language.

The general steps for preparing a program (written in a programming language) for
execution (figure 3.1) are the following:

1. Use an editor program to enter each line of the source program into memory and save it to
disk as a source file. Most programming environments offer an integrated editor.

In VB the source code can be stored in modules (files with .bas extension) or in the
source file associated to forms. Until you save explicitly the project you work on, all
new source code (or the older one corresponding to loaded objects) is stored in
temporary files created when loading the project and/or adding components. You can
save your changes any time by pressing the File, Save… option or by pressing the
Save button in the toolbar.

2. Use a compiler/interpreter program to translate the source program into machine language.
If there are any syntax errors (errors in grammar), the compilers/interpreter displays these
errors on the monitor. Use the editor program to correct the errors by editing and resaving the
source program.

In VB environment the syntax errors are signaled as they produced. You can correct
them in the same editing session. In that way you can obtain a syntax error free code.
[VB6] You can run the program by choosing between Run, Start (the interpreter only)
command and Run, Start With Full Compile (the compiler). The compiler is started
automatically when you select the File, Make <project name>.exe option.
[Visual Studio 2005 (VS-05) and up] The Build, Publish <project name> starts the
wizard that will allow you to specify the location where the installer is build and

Figure 3.1 Steps for preparing a program for execution

INFORMATICS: Computer Hardware and Programming in Visual Basic

89

which ”device” the user will use to later on install the application (web site, Universal
Naming Convention [UNC] path or file share, CD-ROM/DVD-ROM).

3. When the source program is error free, the compiler saves its machine-language translation
as an object program.

[VS-05] The output of the Build phase is a semi-compiled IL (intermediate language)
and includes ready-to-execute versions of the original source code’s types and
members (all this content can be “decompiled” using the disassembling tool
ildasm.exe included in .NET package). The CLR (Common Language Runtime)
realizes a final just-in-time (JTI) compile of IL assembly, to prepare it for use on the
local platform.

4. The linker/loader program combines your object program with additional object files that
may be needed for your program to execute (for example programs for input and output) and
stores the final machine language in memory, ready for execution. The linker/loader can also
save the final machine language program as an executable file on disk.

In VB environment you can obtain the executable file by activating the File, Make
<project name>.exe option. If you intend to run your program on another computer is
possible that the executable do not work. That happened because the program may
need some libraries registered in the computer and they are not. To be sure that your
program runs anyway use the “Application Setup Wizard” from your VB package to
create a setup application program that includes all references needed by the program.
The setup will help you to install correctly your program on a new computer system
running under a compatible operating system.

Executing a Program

As we seen earlier the computer is a programmable device and the part called CPU is
responsible with instruction interpretation and execution. The program must be represented in
machine language (patterns of bits). To execute a machine language program, the CPU must
examine each program instruction in memory and send out the command signals required to
carry out the instruction. Although the instructions normally are executed in sequence, as we
will discus later, it is possible to have the CPU skip over some instructions or execute some
instructions more than once.

THE REPRESENTATION OF PROCESSING ALGORITHMS

90

During the execution
data can be entered into
memory and manipulated in
some specified way. Special
program instructions are used
for entering or reading a
program’s data (called input
data) into memory. After the
input data have been
processed, instructions for
displaying or printing values in
memory can be executed to
display the program result. The
lines displayed by a program
are called the program output.
The flow of information during
program execution can be
summarized as in figure 3.2

3.1.2 The Description of Algorithms by Means of Logical Diagrams
(Flowcharts)

Process, Program and Document Flowcharts

 In the general analysis of information system the designer can use three kinds of
flowcharts: document, process, and program flowchart and/or narrative descriptions in
pseudocode.

Document Flowchart. A document flowchart is a diagram illustrating where documents
originate and where copies of them are sent. The most useful kind of document flowchart
shows what happens to the copies of a single document from the time they are created
until each of them is in a file or in the hands of an outside party. A consolidated
flowchart for a single process shows origins and fates of all documents in the process.
Process Flowchart. A process flowchart is a diagram that shows the data and operation
for a single process. If a process is complex, several flowcharts may be needed to cover it
complexity.
Program Flowchart. A program flowchart is a diagram that shows the data, steps, and
logic of a process operation, does show logic and additional processing detail. It also
allows you to make certain that formulas and calculations are included in the instructions
to the programmer.
Pseudocode. The statements in the flowchart can be extracted from it and listed in order.
They form, in this way, the basis for pseudocode. Pseudocode is a set of succinct
instructions to the programmer using some of the syntax of the language in which the
application will be programmed.

Figure 3.2 Executing a program

INFORMATICS: Computer Hardware and Programming in Visual Basic

91

The Basic Symbols Used in Drawing Program Flowcharts

 The symbols used for building logical diagrams (program flowcharts) are shown in the
table 3.1.

Table 3.1 Symbols used in Drawing Program Flowcharts

1. Terminal/Interrupt (Start/Stop) - It marks the START and the
STOP of the logical diagram and/or the beginning and ending of a
procedure (function, subroutine). Inside is written, case usage
dependent, either the word START/STOP (for main programs) or
the call model for the procedure (function or subroutine);

2. Process/Calculation Block - It is used for representing calculus
formula, changes of the index values, assigning of values. Inside
are written the expressions of that operations;

3. Procedure - A call to another process or procedure. Inside is
written the name of the procedure followed by the list of
parameters in the order as specified in the call model;

4. Decision Block - It is used for the passing in different points, of the
diagram, depending on the true state or false state of a logical
condition;

5. Preparation – used to specify Open/Close operations on files (or
computer ports, or connections to host computers or to long
distance databases);

6. Input/Output Block - It is used to represent read and write
operations on data. Inside is written the operation sense such as
reading (expressed by commands as: Read, Input, Accept, Select,
Get, In) or writing (expressed by commands as: Write, Display,
Put, Update, Modify, Print, Out) followed by the logical device
name (allowed by the system at opening) and the list of
values/variables on which the command acts.

7. Onpage Connector - Used to link different points of the logical
diagram in the same page. Inside is written a label (can be a
digit/number or a word – is preferable to be of significance for the
reader) that must be defined only once as entry point (the arrow
goes from symbol) and how many times needed as exits (or go to).
The entry labels must be unique for a particular flowchart;

 1 1 2 …. N

e
e e e

THE REPRESENTATION OF PROCESSING ALGORITHMS

92

Step 1 Step 3 Step 2

8. Offpage Connector - It links different points of the logical
diagram in different pages. It has the same rules as the Onpage
Connector.

 1 1 2 …. N

9. Flow – Is a connection from … to that links all the blocks in the
diagram and shows the transfer sense of the information.

Fundamental Structures Used in Algorithm Representation

 Each algorithm can be represented as a combination of three control structures:
1°. Sequential or process structure;
2°. Alternative or decision structure (If … then … else …);
3°. Loop (repeating, cycle) structure – the condition evaluated first (Do While)
 From these basic structures are derived and used by programmers the following three
structures:
4°. Case of (Switch case);
5°. Do Until – loop with the condition evaluated after;
6°. Counted loop structure (For … Next).

The sequence control of the next step in programs is usually carried out with the aid of
various combinations of instructions used to model the control-flow structures or control
structures, as the following:
- Direct sequencing, of the form ‘do A followed by B’ or ‘do A and then B’ [HF.04];
- Conditional branching, of the form ‘if C then do A otherwise do B’ or just ‘if C then do
A’, where C is some condition [HF.04];
- Repeating, of the form ‘do A while C’ or ‘do A until not C’, where C is some condition, or
‘for Y from 1 to N do A’.

3.2 Sequential Structure

The sequential structure can be represented as a sequence of operations

 Sequence

or as a transformation block:

T from the graphical representation is a data transformation such as
assignments and/or computations, data type declarations, input/output
operations etc.

e
e e e

T

INFORMATICS: Computer Hardware and Programming in Visual Basic

93

 Example:

This algorithm realizes an interchange of the content of the variable named x

with the content of the variable named y. The variables x and y from the name of the
procedure Exchange(x, y) are called arguments and the real (actual) values for these
are passed to the procedure at call time. The call is realized, in almost algorithmic
programming languages (as C ++, Visual Basic, Pascal etc.), by writing the name of
the procedure followed by the list of the arguments. The call Exchange(x, y) means
applying the operations included in the procedure body to the content of variables x
and y.
In the computation block from the figure 3.3 the numbered line means:

- (1) the content of variable x is stored in a temporary
(working) variable called temp;
- (2) the content of variable x is overwritten by the
content of variable y (first is deleted and after deletion
the content of y is copied);
- (3) the content of y is overwritten by those of the
variable temp (it contains the value of x as passed at the
call time).
The new values of x and y are returned to the caller.

For example, the call: Exchange(3, 2)
realizes the operations:
temp = 3
x = 2
y = 3 (the temp content)
And returns 2, 3

Some programming languages describes, in the syntax of the call model, the return
parameters and the usage sense IN, OUT, IN-OUT together with the accepted data
type (Integer, Single, Double, String etc.).

3.2.1 Assignments

The assignments are represented, in the used programming languages, in one of the
next following formats:
 x←0 x=0 x:=0
 store 0 To x
 x = expression
 variable = expression

The interpretation of the last form is: the variable before the assignment operator is
assigned a value of the expression after it, and in the process, the previous value of variable is
destroyed.

Figure 3.3 The representation
of Exchange operation

Exchange(x,y)

Return(x,y)

temp=x
x=y
y=temp

1
2
3

THE REPRESENTATION OF PROCESSING ALGORITHMS

94

An expression can be an expression on character string, a logical expression or
arithmetic expression. It can be a variable, a constant, a literal, or a combination of these
connected by appropriate operators.
 An assignment statement stores a value or a computational result in a variable and is
used to perform most arithmetic operation in a program.
1. An expression on character string can be built (in VB but not only) using:

- the concatenation operator: & or +
- intrinsic functions for extracting substrings from a string variable or string constant
such as:
 Right(string,number_of_characters) - extracting substring from the end
 Left(string,number_of_characters) - extracting substring from the beginning
- functions that manipulate strings:
 Cstr(expression) – convert the expression in a character string;
 Lcase(string_expression) – convert the string in lower case;
 Ltrim(string), Rtrim(string), Trim(string) – eliminates the spaces (trailing) from left
(leading blanks), right and, respectively left-right;
 Str(number) – converts number in string;
 Ucase(string) – converts string to uppercase.

In Visual Basic .NET all this functions are available in the namespace Microsoft.VisualBasic
and must be prefixed with that construction, such as in the call
Microsoft.VisualBasic.Right(”Mihail Eminescu”,8) that returns “Eminescu”.

2. A logical expression can be:
 • simple, with the general syntax:
 <variable>[<relation_operator><variable>]
 or
 <variable>[<relation_operator><constant>]
 <relation_operator>::=<|<=|>|>=|=|<>
 • complex, with the general syntax:

e1 Eqv e2 - equivalence;
e1 Imp e2 - logical implication;
o1 Is o2 - equal-to, compare two object reference string like pattern;
o1 IsNot o2 - not-equal-to, compare two object reference string like pattern [VS-05];
e1 Xor e2 - exclusive or;
e1 Like e2 - pattern operand, returns True if the first operand e1 matches the string
pattern defined by the operand e2[VS-05];

 <logical_expression1><logical_operator><logical_expression2>
 where the logical_operator can be:

And, Or as binary operators (connectives);
Not as unary operator, returns the opposite of a Boolean operand;
AndAlso act just like And operator, but it doesn’t examine or process the second
operand if the first one is False [VS-05];
OrElse act just like Or operator, but it doesn’t examine or process the second operand
if the first one is True [VS-05].

INFORMATICS: Computer Hardware and Programming in Visual Basic

95

The precedence of evaluation of logical operators is Not, And, AndAlso, Or, OrElse.
 The logical functions works as explained in chapter two. Each one has an associated
truth table that take carry of the two states True or False and, in some programming
environments, a state called Empty (or Null) to distinguish between False an non value. If you
want to see how this really works you must consult the VB programming environment.

3. An arithmetic expression uses the syntax:
 <operand1><arithmetic_operator><operand2> where:
- <operand1>,<operand2> can be numeric variables, literals, constants or arithmetic
expressions (or calls to functions that returns numeric values)
- arithmetic_operator (binary operators) is one of the following:

“-“ and “+” can be used as sign designator and are referenced as unary operators.
Or a shift operator [VS-05]:

Operator Significance Example
(for x=3)

Evaluation Priority (in
descending order)

+ Add x+1→4 1
- Subtract x-1→2 1
* Multiply 4*x→12 2
/ Divide x/2→1,5 2

\ or div Integral division x\2→1 2
 mod Modulus x mod 2→1 remainder 1 2

^ Exponentiation x^2→9 3

Operator Significance Explanation

Evaluation Priority
(in descending
order)

<< Shift Left Shifts the individual bits in an integer
operand to the left by the number of bits
specified in the second operand (acts as
multiplying the left operand by two at the
power specified by the second operand).
Example:
1024<<2 will produces 4096 (multiplied
by 4, 22)

2

>> Shift Right Shifts the individual bits in an integer
operand to the right by the number of bits
specified in the second operand (acts as
dividing the left operand by two at the
power specified by the second operand).
Example:
1024>>2 will produces 256 (divided by
4, 22)

2

THE REPRESENTATION OF PROCESSING ALGORITHMS

96

The Visual Basic assignment can be combined with the basic arithmetic (with except
for &, string concatenation) operators (similarly to C/C++ language) as described in the
following table:
Operator Based On Examples

The Expression Is Equivalent With

= Standard assignment
operator

+= + (Addition) a+=1 a=a+1

-= - (Subtraction) a-=1 a=a-1

*= * (Multiplication) a*=2 a=a*2

/= / (Division) a/=2 a=a/2

\= \ (Integer Division) a\=2 a=a\2

^= ^ (Exponentiation) a^=2 a=a^2

<<= << (Shift Left) a<<=2 a=a<<2

>>= >> (Shift Right) a>>=2 a=a>>2

&= & (Concatenation; strings) a&=”this string” a=a & ”this string”

If the desired order of evaluation differs from the operator evaluation order (3, 2, 1)

we can use parenthesis to form sub expressions, as so called embedded or nested expressions.
In that case first evaluated is the most nested parenthesis.

For example, the computation of the real root of the polynomial in 2 can be written as:
(-b + sqr(b^2 – 4 * a * c)) / (2*a).

If an operand in the expression is a function call, generally expressed as
FunctionName(argument list), first the function is evaluated and his invocation is replaced
with a value having the function return data type and later on, the operand linking the function
call to another operand evaluates.

Examples:

Assignment Interpretation
x=3.14 The value 3.14 is assigned to the variable named x
Delta= b^2 – 4*a*c The evaluation of expression b^2 – 4*a*c is assigned to the variable named

Delta
i=i+2 The actual value of variable i is given by the old value of variable i to each

value 2 added
x=Abs(x) The actual value of x is the absolute value (Abs) of his older value

If an expression contains more than one operator and/or parentheses the following
rules of evaluation applies:

INFORMATICS: Computer Hardware and Programming in Visual Basic

97

1. Parentheses rule: All expression in parentheses must be evaluated separately. Nested
parenthesized expressions must be evaluated from inside out, with the innermost expression
evaluated first.

Example:
The formula for the average velocity, v, of a particle traveling on a line between point

p1 and p2 in time t1 to t2 is
12

12

tt
ppv

−

−
= . This formula can be written and evaluated in

VB as shown in figure 3.4.

2. Operator precedence rule. Operators in the same expression are evaluated from left to
right in the following order:

^ first
*, /, mod, \, div, >>, << second
+, - last

Example:

The circle area is given by the formula
Area=πr2 that can be written in VB as
CircleArea=Pi*Radius^2. The formula can
be written and evaluated as shown in figure
3.5.

Figure 3.4 Using the Parentheses rule for evaluating expressions

Figure 3.5 Using the operator precedence rule

THE REPRESENTATION OF PROCESSING ALGORITHMS

98

3. Left associative rule. Operators in the same expression and at the same precedence level
are evaluated left to right.

Example:

The circle area can be written in VB
as CircleArea=Pi*Radius*Radius
and is evaluated as shown in figure
3.6.

3.2.2 Literals

 Some basic data values, such as numbers, date values, strings etc can be included into
the source code of a program just as they are. The literals accepted and the rules of defining
them are the following:

String Literals. String literals are always surrounded by quote marks (can be up to about two
billion characters in length). The character literal is exactly one character in length and is
recognized by the c trailing after the string, for example “A”c designates the capital “A”
character.

Date and time literals. Date and time literals are surrounded by the number sign (pound) and
can be specified in any format recognized by Microsoft Window in a specific region, as for
example #11/17/2008#.

Numeric literals. There are 11 different kinds of numeric data values, both integers and
floating point values, which can be defined by typing the number right in the code, like 27, or
3.1415926535. Visual Basic also lets you specify which of the 11 numeric types to use for a
specific number, by appending a special character to the end of the number. For example,
normally, 27 is an integer and can be a floating-point "decimal" by appending an @ sign:
27@ floating-point decimal. If you do not specify for a number the trailing character
specifying his type the number will be typed, depending of his magnitude and format
(real/integer) automatically by the compiler. The type allows to properly align the result of
computations, in which those literals involved, to the largest precision and to check if they
properly used.

Boolean literals. Boolean values represent the simplest type of computer data: the bit.
Boolean values are either true or false, on or off, yes or no, etc. Visual Basic includes the
Boolean literals True and False.

Figure 3.6 Using the left associative rule

INFORMATICS: Computer Hardware and Programming in Visual Basic

99

The literals supported by Visual Basic and the trailing characters used to specify the
type are the following:

Literal Type Example Description

Boolean True The Boolean data type supports two literal values: True and
False.

Char "Q"c Single-character literals appear in double quotes with a trailing
character c. A literal of type Char is not the same as a single-
character literal of type String.

Date #11/7/2005# Date or time literals appear between a set of number signs and
can include dates, times, or a combination of both. The date or
time values can be in any format recognized by Windows,
although Visual Studio may reformat your date literal for
conformity with its own standards.

Decimal 123.45D
123.45@

Floating point values of type Decimal are followed by a capital
D, or the character @.

Double 123.45R
123.45#

Floating point values of type Double are followed by a capital
R, or the character #. Also, if you use a numeric literal with a
decimal portion, but with no trailing data type character, that
literal will be considered as a Double.

Hexadecimal &HABCD The hexadecimal literals start with the "&H" character
sequence, followed by the hex digits.

Integer 123.45I
123.45%

Integral values of type Integer are followed by a capital I, or the
character %.

Long 123.45L
123.45&

Integral values of type Long are followed by a capital L, or the
character &.

Octal &O7654 You can include octal literals in your code by starting the value
with the "&O" character sequence, followed by the octal digits.

Short 123.45S Integral values of type Short are followed by a capital S.

Single 123.45F
123.45!

Floating point values of type Single are followed by a capital F,
or the character !.

String "Simple"
"A ""B"" C"

String literals appear within a set of double quotes, with no
special character following the closing quote. A quote
character within the string literal will be typed twice, as in the
second example which will produce the string «A "B" C».

3.2.3 Variables and Constants Declarations

The variable that appears in an assignment statement (and not only) in the left side, or
the variables and the constants used in expressions must be declared explicitly. A variable
declaration is not an executable sentence. These kinds of sentences are addressed to the

THE REPRESENTATION OF PROCESSING ALGORITHMS

100

program language compiler and/or interpreter that “eat” them (in the order they appear, as a
sequence). The result of “eating” is a memory reservation with a naming, maybe.

The naming of constants and variables in VB uses the rules:
1. An identifier must begin with a letter;
2. Can’t be longer than 255 characters;
3. Can’t contain embedded period or embedded type declaration character;
4. Must be unique in same scope (the range from which the variable can be referenced).

Variables: are named storage locations that can contain data that can be modified during
program execution (they are reusable). The variables are the memory cells used for storing
program’s input data and its computational results. Using variables is a two step process:
declaration and assignment. The explicit declaration of variables is realized in VB by using
the Dim statement:

 Dim variable[As data_type] [,variable[As data_type]]…

where:

- data_type can be one of Byte, Boolean, Integer, Long, Single, Double, Currency,
Decimal, String, Date, [user_defined], Variant, Object as described in table 3.1;

- variable is a user identifier defined by following the naming rules.
The explicit declaration of variables can be combined with the assignment:

 Dim variable[As data_type][=value1][,variable[As data_type]][=value2]…

Table 3.1 Visual Basic Data Types

Data Type Required
Memory Boundary

Byte 1 byte 0 to 255
Boolean 2 bytes True or False
Char * 2 bytes 0 to 65535
SByte * 1 byte -127 to 128
Integer (Int16)
Short

* 2 bytes -32,768 to 32,767

Integer (Int32) * 4 bytes -2,147,483,648 to 2,147,483,647
Long
(long integer)

 4 bytes -2,147,483,648 to 2,147,483,647

Long (Int64) * 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Single
(floating-point)

4 bytes

-3.402823E38 to -1.401298E-45 for negative
numbers; 1.401298E-45 to 3.402823E38 for positive
numbers

Double
(floating-point)

8 bytes

-1.79769313486232E308 to
-4.94065645841247E-324 for negative numbers;
4.94065645841247E-324 to
1.79769313486232E308 for positive numbers

Currency
(scaled integer)

 8 bytes -922,337,203,685,477.5808 to
922,337,203,685,477.5807

INFORMATICS: Computer Hardware and Programming in Visual Basic

101

Decimal

14 bytes

+/-79,228,162,514,264,337,593,543,950,335 without
decimal mark;
+/-7.9228162514264337593543950335 with 28
positions for the fraction and the less number <>0
equal to
+/-0.0000000000000000000000000001

Date
* 8 bytes 1 January 100 to 31 December 9999

Jan 1, 1 AD to Dec 31, 9999 AD
Object 4 bytes Any reference to an Object
String
(variable length)

 10 bytes +
string length 0 to ≈2 billions (uses UNICODE)

String
(fixed length)

 string length 1 to ≈65,400

Variant
(with numbers)

N 16 bytes Any number value from the double domain

Variant (with
characters)

N 22 bytes +
string length 0 to ≈2 billions

UInteger (UInt32) * 4 bytes 0 to 4,294,967,295 (unsigned integers on 32 bits)
ULong * 8 bytes 0 to 18,446,744,073,709,551,615
UShort * 2 bytes 0 to 65535

User-defined1) (using
Type)

 Number of
required
elements

The size of each element is the same with that for
the associated data type.

 * – Available only in Visual Studio 2005
 N – Not available in Visual Studio 2005

 1)The user defined data type is formed by placing the needed declarative
sentences Type block. For example, if we want represent the structure of a row from the
Balance_Sheet (the Romanian one) this can be declared by the user as follows:
 Type Balance_Sheet_Row
 Dim Account_ID As String*22
 Dim Account_Description As String*60
 Dim Db_Jan As Double
 Dim Cr_Jan As Double
 Dim Db_Prev As Double
 Dim Cr_Prev As Double
 Dim Db_Month As Double
 Dim Cr_ Month As Double
 End Type
 After declaration a user-defined data type can be used in the same way VB data
type used. For our example, we can define a memory variable, that we call Current_Row,
thus: Dim Current_Row As Balance_Sheet_Row

The declaration of references must contain instantiation, such as:
Dim aReferenceToAnObject As Object = New Object

For strings you don’t have to use new if a literal assigned:

THE REPRESENTATION OF PROCESSING ALGORITHMS

102

Dim aNullString as String = ""

A string instance that is initialized with a character repeated a number of times, suppose 20
stars: Dim starValue As String = New String("*"c,20)
Such declarations can be split in two parts - declaration and assignment - as in the example:
Dim starValue As String
starValue = New String("*"c,20)

Constants: can appear as such anywhere as literals, intrinsic constants available in the Visual
Basic programming environment or in other Windows applications, or as declarations in the
declarative part of the program. Literals can be used only once in the code; if you want use
many times you must declare them each time. The constants are like a cross between literals
and variables: they have a single never-changeable value just as literals but must be declared
and assigned with the value just as variables.

Examples:

Constant Type
"Welcome to the information century!"
$25,000.00
3.14
-123
0.123e+3
“11/12/2009”

string
currency
positive real number
negative integer number
number written in the scientific notation
date

Constants can be defined as a declaration statement by using the syntax:
Const constantName[As data_type]=expression[,…]

where:

- data_type can be one of Byte, Boolean, Integer, Long, Single, Double, Currency,
Decimal, String, Date, [user_defined], Object, etc as described in table 3.1;

- constantName is an user identifier defined by following the naming rules;
- expression an expression evaluated to an agreed data type whose evaluation is

considered the default value for the constant.

Examples:

 Const Pi As Single = 3.14159
 Const Vat As Single = 0.19, Star As String = “«”

A declared constant is a named storage location that contains data that cannot be
modified during the program execution. The most used constants are number constants and
string constants. A string constant is sequences from 0 to 1024 characters enclosed in quotes.

INFORMATICS: Computer Hardware and Programming in Visual Basic

103

3.2.4 Input/Output Operations by Using InputBox and MsgBox Functions

VB offers a variety of sentences for input/output operations. Even the flowchart
symbol is not the same as the one used to represent the sequence structure the behavior is
similar and all this operations are executed as sequences. For instance we introduce now two
functions: input - InputBox(…) and output - MsgBox(…) used to activate a standard dialog.

InputBox. Displays a prompt in a dialog box, waits for the user to input text or click a button,
and returns a string containing the contents of the text box.

Syntax:
InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

where:

Argument Description
prompt Required. Is a string expression that is displayed as the message in the

dialog box. Can be up to 1024 characters in length. If prompt consists of
more than one line they must be separated by a carriage return character
(Chr(13)), a linefeed character (Chr(10)), or carriage return–linefeed
character combination (Chr(13) & Chr(10)).

title Optional. String expression displayed in the title bar of the dialog box. If
you omit title, the application name is placed in the title bar.

default Optional. String expression displayed in the text box as the default
response if no other input is provided. If you omit default, the text box is
displayed empty.

xpos Optional. A numeric expression that specifies, in twips, the horizontal
distance of the left edge of the dialog box from the left edge of the
screen. If xpos is omitted, the dialog box is horizontally centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical
distance of the upper edge of the dialog box from the top of the screen. If
ypos is omitted, the dialog box is vertically positioned approximately
one-third of the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If helpfile is provided, context
must also be provided.

context Optional. Numeric expression that is the Help context number assigned
to the appropriate Help topic by the Help author. If context is provided,
helpfile must also be provided.

THE REPRESENTATION OF PROCESSING ALGORITHMS

104

Example:

The call InputBox(

“Prompt”, ”Valoare_implicita”,
”Titlu”) will produces the
dialog box from figure 3.7.

MsgBox. Displays a message in a dialog box, waits for the user to click a button, and returns
an Integer indicating which button the user clicked.

Syntax:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])
where:

Argument Description
prompt Required. Is a string expression that is displayed as the message in the

dialog box. The maximum length of prompt is approximately 1024
characters depending on the width of the characters used. If prompt
consists of more than one line, you can separate the lines using a carriage
return character (Chr(13)), a linefeed character (Chr(10)), or carriage
return – linefeed character combination (Chr(13) & Chr(10)) between each
line.

buttons Optional. A numeric expression that is the sum of values specifying the
number and type of buttons to display, the icon style to use, the identity of
the default button, and the modality of the message box. If omitted, the
default value for buttons is 0.

title Optional. String expression displayed in the title bar of the dialog box. If
you omit title, the application name is placed in the title bar.

helpfile Optional. String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If helpfile is provided, context
must also be provided.

context Optional. Numeric expression that is the Help context number assigned to
the appropriate Help topic by the Help author. If context is provided,
helpfile must also be provided.

The value for buttons argument can be determined as a sum of the following Visual

Basic constants:
Constant Value Description
vbOKOnly 0 Display OK button only.
vbOKCancel 1 Display OK and Cancel buttons.
vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

Figure 3.7 Example of using InputBox

INFORMATICS: Computer Hardware and Programming in Visual Basic

105

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.
vbYesNo 4 Display Yes and No buttons.
vbRetryCancel 5 Display Retry and Cancel buttons.
vbCritical 16 Display Critical Message icon.
vbQuestion 32 Display Warning Query icon.
vbExclamation 48 Display Warning Message icon.
vbInformation 64 Display Information Message icon.
vbDefaultButton1 0 First button is default.
vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbDefaultButton4 768 Fourth button is default.
vbApplicationModal 0 Application modal; the user must respond to the

message box before continuing work in the current
application.

vbSystemModal 4096 System modal; all applications are suspended until
the user responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box
VbMsgBoxSetForeground 65536 Specifies the message box window as the foreground

window
vbMsgBoxRight 524288 Text is right aligned
vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left reading

on Hebrew and Arabic systems

For example the call MsgBox(“Prompt”,vbInformation+vbOkCancel, “Titlu”) will

produces the dialog shown in figure 3.8. The returned values correspond to the pressed
button:

Constant Value Description
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

In the following example is illustrated how to write the message on many lines and

what means a string expression:

MsgBox "The Student " & Name & Chr(13) & Chr(10) & " has the average mark: " & media

What is between “…” means literal strings that will be placed as such in the message; Name
and media are named variables whose content will be concatenated by the string
concatenation operator (&) with the literals and the function calls Chr(13) & Chr(10) means
display what follows on a separate line.

Figure 3.8 Example of an MsgBox
dialog

THE REPRESENTATION OF PROCESSING ALGORITHMS

106

3.3 Alternative Structure (Decision)

The decision structure (figure 3.9) is used for

choosing an alternative (an operation or block of
operations) from two possible alternatives.
Algorithm steps that select from a choice of actions
are called decision steps.
 The decision block can be expressed in a
natural language as:
- evaluate the expression that defines the logical
condition <condition>;
- If the result of evaluation is True

Then execute operation1
Else execute operation2;

- continue the execution with the next step in the flow
 The logical condition <condition> is a logical expression that will be evaluated either
to True or either to False. The logical conditions can be simple or complex logical conditions.

A simple logical condition has the general syntax:
<variable> [<relation_operator ><variable>]
or
<variable> [<relation_operator ><constant>]

The relation_operator can be one of:

Relation Operator Interpretation
< Less than. Example: delta < 0

<= Less than or equal. Example: delta <= 0
> Greater than. Example: delta > 0

>= Greater than or equal. Example: delta >= 0
=

(in C++ the operator is ==)
Equal to.
Example: a = 0

<>
(in C++ the operator is !=)

Not equal.
Example: a<>0

If <variable> is number or Boolean then is possible to directly compare with 0,
respectively True and is not necessary to write the equal relation operator.

The simple logical conditions will be connected by the AND, OR, and NOT logical
operators to form complex conditions. The logical operators are evaluated in the order NOT,
AND, and OR. The change of the natural order of evaluation can be done, by using round
parenthesis, in the same way as for arithmetic expressions. The precedence of operator
evaluation in Boolean expressions (logical expressions) is:

Not
^,*, <<, /, >>, div, mod, and
+, -, or
<, <=, =, <>, >=, >

If … Then … Else. The alternative structure can be expressed in pseudocode as:

Figure 3.9 The decision block

INFORMATICS: Computer Hardware and Programming in Visual Basic

107

Visual Basic (Access, VBA) C++ (Java)
If condition Then

operation1
Else

operation2
End If

if (condition)
operation1;

else
operation2;

Each condition’s Then (true branch)
keyword is followed by one or more VB
statements that are processed if the
condition evaluates to True.
Each condition’s Else (false branch)
keyword, is followed by one or more
statements that are processed if the
condition evaluates to False.

If one of operations includes a sentences
sequence then this sequence will be included
in a sentence block:
{

operationi;
}

PASCAL
If condition Then
 operation1

Else
 operation2;

If one of operations includes a sentences
sequence then this sequence will be included
in a sentence block:
Begin
 operationi
End

 Example:

We design the logical

flowcharts (figure 3.10) and the
corresponding procedures to
determine the min value -
Min(x, y), and max value -
Max(x, y) from two values
passed in arguments.

Figure 3. 10 A description of min and max algorithms for any kind
of data type values

THE REPRESENTATION OF PROCESSING ALGORITHMS

108

It is possible do not have a specific operation on the two branches, that mean situations as
depicted in figure 3.11. If the condition is true then the set of sentences placed between If and
End If are executed.

 The decision block (figure 3.11) is
expressed in a natural language as:

- evaluate the condition;

- if the result is True then execute operation1;

- else continue the execution of the program.

The pseudocode can be expressed in one of the formats:
Basic (Access, VBA) C++ (Java)
If condition Then statement

If the condition is True then the statement
is executed

If condition Then
 Sequence of statements1
End If
If the condition is True Then the group
between Then and Else will be executed
Else the group of sentences between Else
and End If will be executed.

if (condition) operation;

if (condition) {

operations;
}

Inline if:
IIf(condition, trueReturn, falseReturn)
If the condition is true then the evaluation
of the expression trueReturn will be
returned

An implementation of Min and Max
Function Min(x As Variant, y As Variant)
As Variant
 If x > y Then

 Min = y
 Else
 Min = x

 End If
End Function

Function Max(x As Variant, y As Variant)
As Variant
 If x < y Then

 Max = y
 Else
 Max = x

 End If
End Function

Figure 3. 11 The decision block without the
Else branch

INFORMATICS: Computer Hardware and Programming in Visual Basic

109

Else the evaluation of the expression
falseReturn will be returned

PASCAL
If condition Then

operation;
If condition Then

Begin
operations;

End;

Almost programming languages allow nesting if ... then ... else sentences (one if

statement inside another) to form complex decision structures (decisions with multiple
alternatives).

Examples:

A special case of the If sentence is the sentence if...then...elseif... available in VB (a
similar structure is available, for example, in the procedural component PL/SQL of Oracle
DBMS). The nested If can be coded as a multiple-alternative decision. The syntax for that
nested If is:

 If condition1
 Then
 sequence1
 ElseIf condition2 Then
 sequence2 . . .
 Else . . .
 End If

For the first time condition1 is tested. If the result is False condition2 is tested and so

on until a True evaluated condition reached for each the associated sentence block executed.
After executing the reached block, the control of processing is passed to the next sentence
after End if. If no condition evaluates to True then the sentence block associated to the Else
branch executes (if Else defined; if not nothing executes).

a) Another implementation of Min and Max

Function Min(x As Variant, y As Variant)
As Variant
 Min=x
 If x > y Then Min = y
End Function

Function Max(x As Variant, y As Variant)
As Variant
 Max=x
 If x < y Then Max = y
End Function

THE REPRESENTATION OF PROCESSING ALGORITHMS

110

Examples:

a) using nested If:

Sub Factorial_Call()
 n = InputBox("Type the value for n:", "VB Samples: n!")
 If IsNumeric(n) = True Then

 If Int(n) = n Then

 ‘ Call to the iterative implementation of factorial function
 valReala = Factorial_Iterativ(n)
 Raspuns = MsgBox("The Factorial is: " & valReala, vbInformation + vbOKOnly)

 ‘ Call to the recursive implementation of factorial function
 valReala = Factorial(n)
 Raspuns = MsgBox("The Factorial is: " & valReala, vbInformation + vbOKOnly)

 End If

 End If
End Sub

b) We redefine the Min and Max functions by using the procedure Exchange:

Function Min(x As Variant, y As
Variant) As Variant
 If x > y Then Exchange x, y
 Min = x
End Function

Function Max(x As Variant, y As Variant)
As Variant
 If x < y Then Exchange x, y
 Max = x
End Function

c) We define a procedure that
take as arguments the values of x
and y and arrange them in
ascending order called Asc(x,y). We
do that in two versions: first realize
all the operations and the second
call the procedure Exchange(x,y).
In these example the values x and y
are arranged (sorted) in ascending
order, in conformity with the used
comparison operator (< in our
case). The algorithm can be
conformed to any desired ordering
by changing accordingly the

 a) b)

Figure 3.12 The definition of the algorithm for ascending
ordering

INFORMATICS: Computer Hardware and Programming in Visual Basic

111

comparison operator.
The implementations of the algorithms from figure 3.12 are:

‘ By using the function exchange (switch)

Sub Asc(x As Variant, y As Variant)
 If x > y Then Exchange x, y
End Sub

‘ By programming all operations

Sub Asc(x As Variant, y As Variant)
 Dim temp As Variant
 If x > y Then
 temp = x
 x = y
 y = temp
 End If
End Sub

d) this sequence chooses the case for VAT percent for a VAT calculator:

Private Sub PTvaGen()
 If PTva1.Value = True Then
 PrTVA = PrTVA1
 PTva2.Value = False
 Ptvax.Value = False
 EtAltTVA.Visible = False
 AltTVA.Visible = False
 ElseIf PTva2.Value = True Then
 PrTVA = PrTVA2
 PTva1.Value = False
 Ptvax.Value = False
 EtAltTVA.Visible = False
 AltTVA.Visible = False
 ElseIf Ptvax.Value = True Then
 PrTVA = PrTVAx
 PTva1.Value = False
 PTva2.Value = False
 EtAltTVA.Visible = True
 AltTVA.Visible = True
 FrmTva.Refresh
 Else
 MsgBox "Att.! Computation Error!",vbCritical
 End If
End Sub

THE REPRESENTATION OF PROCESSING ALGORITHMS

112

Case of. Executes one of several groups of statements depending on the value of an
expression (called selector). The case structure (and statement) can is especially used when
selection is based on the value of a single variable or a simple expression (called the case
selector): it compares a single value against a set of test cases values. A proposed graphical
representation is shown in figure 3.13.

Each expression_list is described as one or more values separated by comma.

First syntax:

Basic (Access, VBA) C++
Select Case test_ expression

[Case expression_list1
[sentences1]]

[Case expression_list 2
[sentences 2]] . . .

[Case Else
[sentences n]]

End Select

switch (expression_int) {
case constant_expression1:

operations1
case constant_expression2:

operations 2 . . .
default:

operations n
}

Figure 3.13 The Case Of structure

INFORMATICS: Computer Hardware and Programming in Visual Basic

113

- each expression_listi is represented (or
formed) by one or many comma separated
values (value list);
- in the block Select Case the case Else can
appear only once and only as a last case;
- if many cases fit to test_ expression then
the first founded will be executed;
- each sentence block (sentencesi) can
include zero, one or many sentences;
- the evaluation of the test expression is
realized only once at the beginning of the
Select Case structure.

- expression_int is an expression that must
produced an integral value (int);
- constant_expressioni must be a constant
expression;
- the label default: can by be used only
once.

PASCAL
Case expression of

label1:
operations1;

label2:
operations2;

.

.

.
else or otherwise

operationsn;
end

- expression is also called the selector of
instruction Case. The case selector must
be an ordinal data type (data types Integer,
Boolean and Char are ordinal types, but
data type Real is not), or a data whose
values may all be listed.
- label1, label 2, ..., label i, ... are list of
possible values of the selector (they must
be of the same data type with the selector);
- if the value of the selector don’t fit to a
label the operations specified on branch
Else (otherwise) will be executed;
- the values of constants must be unique
for a labeli.

Second Syntax:

Choose(index,choice_1[,choice_2,…[,choice_n]])

The return is Null if n<index<1.

THE REPRESENTATION OF PROCESSING ALGORITHMS

114

Example:

 Suppose we want to build a simple calculator
(figure 3.14) that deals with formulas of the type:

result = operator op1 or result =op1 operator op2

where the variables op1 and op2 are numeric data
types.

The choosing of the right computation is

realized depending on the property Caption of the
button. Each button is included into an object
collection called Operator() and to each button is
associated an index.

The selection of the Case (the operation desired=the button pressed) is realized
depending on a flag indicator (OpFlag) in which is stored the value of the Caption property.
The following code sequence represents the operator analyzer of a desk computer allowing
the direct VAT elements computation (Romanian rules). The sequence calls user defined
functions as AfiseazaBazaTva, for example, to which you must don't think. You can see how
the CASE OF pseudocode can be used in practice:

Figure 3.14 An example of a VAT
calculator

the
“operator”
buttons

INFORMATICS: Computer Hardware and Programming in Visual Basic

115

3.4 Repeating Structure

The repeating structure repeats a block of statements while a condition is True or Until
a condition becomes True. The repetition of steps in a program is called a loop. The
executions of such blocks follow the scenario (while; figure 3.15): the condition is evaluated
and if the condition evaluates to:

• True then executes the block of statements;

• False then end the execution of the cycle (Loop) and continue the execution of the
program.

If for the first time the condition is False the sentence block is simply skipped.

Select Case OpFlag ‘ OpFlag contains the pressed Operator key

 Case "1/x"
 AfiseazaBazaTva
 If Op1 = 0 Then
 MsgBox "Nu pot sa impart la 0 [ZERO]", 48, "Calculator"
 Else
 Op1 = 1 / Val(Op1) :Readout = Format(Op1, "###,###,###,###,###.00")
 End If

Case "%"
 AfiseazaBazaTva :Op1 = Val(Op1) / 100#

Case "sqrt"
 AfiseazaBazaTva
 If Op1 < 0 Then
 MsgBox "Nu pot sa Calculez Radical din Numere Negative", 48, "Calculator"
 Else
 Op1 = Sqr(Val(Op1))
 End If
 Readout = Format(Op1, "###,###,###,###,###.00")

Case "T.V.A."
 If Op1 = 0 Then
 MsgBox "De ce sa calculez Baza pentru valoarea TVA 0",48,Calculator"
 Else
 ValBaza = Val(Op1) :ValTva = ValBaza * (PrTVA / 100)
 BazaTVA.Caption = Str(Format(ValBaza, "###,###,###,###,###.00"))
 TvaAferent.Caption = Str(Format(ValTva, "###,###,###,###,###.00"))
 Readout = Str(Format(ValBaza + ValTva, "###,###,###,###,###.00"))
 End If

End Select

THE REPRESENTATION OF PROCESSING ALGORITHMS

116

Conditional Loop with Condition Evaluated First

Syntax:
 Do [{While|Until}condition] → beginning of cycle
 [statements]
 [Exit Do] → body of the cycle
 [statements]
 Loop → the end of sentence block

 The commands Loop and Exit Do are used to do:

- Loop – an unconditional jump (or branch) to the beginning
of the associated cycle (the evaluation of the condition);

- Exit Do – an unconditional ending of the cycle (a jump to
the next sentence defined under the loop that ends the body of
the cycle).
Do…Until work as:
 1) execute statements;
 2) evaluate the condition Loop or Exit
 The block of commands between Do… and Loop will
be executed while/until the conditional expression “condition”

evaluates to True.
Visual Basic (Access, VBA) C++
 Do [{While|Until}] condition

operations
[Exit Do]
[Continue Do]

Loop

 A set of commands (operations)
placed between Do While and Loop is
executed for as longs the logical condition
remains True.
Exit Do – Loop statement immediately;
Continue Do – immediately jumps to the
end of Do … Loop statement.

- first syntax:

 while (condition) operation;

- second syntax:

 while (condition)

{
operations;
[continue;]
[break;]

}
where:
 - continue jump to the condition evaluation;
- break interrupt the cycle and transfer the
execution to the sentence that follows to the
end block marker }

Figure 3. 15 Loop structure

INFORMATICS: Computer Hardware and Programming in Visual Basic

117

PASCAL
First syntax:

while condition do

operation;

Second syntax:

While condition do

Begin
operations;
Exit

End;

- Exit means an unconditional exit from loop.

If the repeating structure is placed in the body of a subroutine (function or procedure)
we can exit from the cycle by using the returning to caller commands.

 Examples:

I. Let be a, a positive real
number. Define recursively the
sequence of xi of positive
numbers as follow:
 x0 = 1
 xi+1 = (1/2)*(xi + a/xi) for
i=0,1,2,...
Draw a flowchart (figure 3.16)
that reads in the value
interactively and uses this
algorithm to compute the square
root of a (it can shown
mathematically
that

∞→→ i for axi).

 The algorithm stops when
xi-1 equals with xi-precision,
where precision is a positive fraction low value (the desired precision), that mean to be satisfied
the following condition |xi-xi-1|≤precision. The condition can be described as: the difference from
the current value (xi) and the previous one (xi-1) must be at least the desired precision (for
example 0.001 if the precision must be at the third decimal).

Figure 3. 16 A flowchart for the Newton-Raphson method

THE REPRESENTATION OF PROCESSING ALGORITHMS

118

 This algorithm is derived from the so known Newton-Raphson method in numerical
analysis. Figure 3.17 shows a form representing the interface for the implementation in Visual
Studio 2005 of the algorithm depicted in figure 3.16.

Figure 3.17 The form used as interface for the implementation of the algorithm

The arrows in the figure 3.17 indicate the name given to the object they point to.
Public Class Newton

 Private Sub CloseForm_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles CloseForm.Click
 Me.Close()
 End Sub

 Private Sub SquareRoot_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles SquareRoot.Click
‘ Memory variables reservation
 Dim x0 As Double, x1 As Double, a As Double
‘ Check if the value typed by the user in the text box labeled Value (ValComp.Txt) is not numeric and
‘ sends a warning message to the user about that and returns to fix the mistake
 If IsNumeric(Trim(Me.ValComp.Text)) = False Then
 MsgBox("Type a valid value and repeat!", vbOKOnly, "Attention!")
 Else
‘ If the value is a number:
‘ 1. convert this number from his external representation in a real number
‘ 2. initialize the variables x0 and x1
 a = Val(Trim(Me.ValComp.Text))
 x0 = 1
 x1 = 0
‘ 3. starts an “infinite” loop
 Do While True = True
‘ 4. computes the values by applying the formula
 x1 = (1 / 2) * (x0 + a / x0)
‘ 5. exits from cycle when two consecutives computed values are equal
 If x0 = x1 Then Exit Do
 x0 = x1
 Loop
‘ 6. writes the obtained value in the form and exits.
 Me.ValRezult.Text = x0
 End If
 End Sub
End Class

INFORMATICS: Computer Hardware and Programming in Visual Basic

119

II. For a nonnegative integer n the factorial of n, written n!, is defined by:
a) iterative mode

0! = 1
n!=n*(n-1)(n-2)*...*3*2*1 for n>0
Function Factorial_Iterative(n As Integer)
As Double
 Dim fact As Double
 fact = 1 ' Initialize to 1 for product
 Do While n>0
 fact = fact * n
 n=n-1 ‘Next cycle
 Loop
 ‘ The returned value
 Factorial_Iterative = fact
End Function

Conditional Loop with Condition Evaluated After

 In this case the operation is executed first and then the
condition is evaluated (figure 3.18).

 It can be described as:

- the operations are executed;
- the condition is evaluated;
- if the result of the evaluation of the condition is False
then loop to execute again the operations;
- if the evaluation of the condition is True then
continue the execution of the program (and close the
loop).

The syntax for the sentences that implements that structure are:

Basic (Access, VBA) C++
Do

operations
Loop {While|Until} condition

do
{

operations;
} while conditions

PASCAL
repeat

operations;
until condition

Figure 3. 18 Do … Until

THE REPRESENTATION OF PROCESSING ALGORITHMS

120

Counter Loop. Executes a set of statements (operation1) within a loop a specified number of
times (figure 3.19).

 A variable is used as counter to specify how
many times the statements inside the loop are
executed.

 In this diagram:

- iv - is the initial value (start value - usually 0 or 1);

- fv - is the end value (the expected value - usually
how many times);

- step - is the increasing (or decreasing) step for
counter.

The pseudocode for this structure is:
Basic (Access, VBA) C++

For counter = vi To fv [Step s]

operations
[Exit For]
[Continue For]

Next [counter]

Where:
- the value for s can be positive or
negative;

- if s is positive then must have the
inequality vi<fv (otherwise the cycle never
executes);
- if s is negative then must have the
inequality vi>=fv (otherwise the cycle
never executes);
- if a value for Step not specified the
default is used (+1);
- the cycle can be stopped unconditionally
by intermediate of the sentence Exit For
or can be reiterated by the sentence
Continue For (goes to the end of For)

for (expression1; expression2; expression3)
operation;

If many operations desired in the cycle they
must be included as block;

expression1 – is an expression that initialize
the counter;

expression2 – contains the definition for
ending the loop;

expression3 – is an expression to increment
or decrement the value for the counter.

The cycle can be unconditionally stopped by
using the instruction break and can be
unconditionally restarted by using the
sentence continue.

Figure 3. 19 The representation of For …

counter=iv

counter=fv

counter=counter +step

operations

Yes

Not

INFORMATICS: Computer Hardware and Programming in Visual Basic

121

PASCAL
First syntax:
FOR counter := vi TO fv DO operation; [normal]

Second syntax:
FOR counter:=vi DOWNTO fv DO operation; [in reverse order]

If many operations desired they must be placed in a begin ... end (block).

The execution of For (VB) sentence follows the scenario:
1. The value vi is assigned to the variable counter;
2. The value of variable counter is compared with the end value fv (If the value for

step is negative is checked if counter<fv);
3. The operations are executed;
4. The value of variable counter is incremented with the value step (1 if step not

specified);
5. Repeat the steps from 2 to 5.

The interpretation of the elements of For…Next sentence is:
what cycle number is how many times

For counter=start_value To end_value [Step increment_decrement]
 [statements]
 [Exit For] stop the cycle
 [statements]
 Next [counter]

Examples:

I. Pope pleases the great mathematician Gauss to tell him when Eastern will be in a
wanted year. Gauss says that Eastern will be always on: 4 April + D days + E days where:
D is determined by following the steps:

1 – the year is divided by 19;
2 – the remainder is multiplied by 19;
3 – to the result of step two add fix factor 15;
4 – the sum of values obtained in the steps 1 to 3 is divided to 30 and the remainder is
D

E is determined by following the steps:
1 – the year is divided by 4 and the remainder will be multiplied by 2
2 – the year is divided by 4 and the remainder will be multiplied by 4
3 – compute the sum of values obtained to step 1 and 2
4 – to the sum add 6*D and to product add 6
5 – the total sum is divided by 7 and the remainder will be E

THE REPRESENTATION OF PROCESSING ALGORITHMS

122

A code that implements this algorithm is:
Sub Date_Pasti()
 Dim An_Inceput, An_Sfarsit As Variant, WData As Date
 Dim rasp As Byte, i As Integer
 An_Inceput = InputBox("Anul de la care " & Chr(10) & Chr(13) & "calculam data
Pastelui:", "Calculul datei Pastelui")
 An_Sfarsit = InputBox("Anul pana la care " & Chr(10) & Chr(13) & "calculam data
Pastelui:", "Calculul datei Pastelui")
 For i = An_Inceput To An_Sfarsit + 1
 WData = Data_Paste(i)
 xExemple.Print i, " ", WData
 Next i
 ras = MsgBox("Pastele cade in anul " & An_Dorit & " la " & Data_Paste, vbOKOnly,
"Calcul data Pastelui")
End Sub
Function Data_Paste(An_Dorit As Variant) As Variant
 Dim D As Integer, E As Integer
 D = ((An_Dorit Mod 19) * 19 + 15) Mod 30
 E = (((An_Dorit Mod 4) * 2 + (An_Dorit Mod 7) * 4) + 6 * D + 6) Mod 7
 Data_Paste = DateAdd("d", D + E, CDate("04/04/" & Trim(An_Dorit)))
End Sub

II. For a nonnegative integer n the factorial of n, written n!, is defined by:

a) iterative mode b) recursive mode
0! = 1
n!=n*(n-1)(n-2)*...*3*2*1 for n>0

0! = 1
n! = n((n-1)!) for n>0

INFORMATICS: Computer Hardware and Programming in Visual Basic

123

Function Factorial_Iterative(n As Integer)
As Double
 Dim fact As Double
 fact = 1
 For i = 1 To n
 fact = fact * i
 Next i
 Factorial_Iterative = fact
End Function

Function Factorial(n As Integer) As Double
 If n = 1 Then
 Factorial = 1
 Else
 Factorial = n * Factorial(n - 1)
 End If
End Function

The modern object-oriented programming languages offers a for sentence with the
syntax For Each ... Next that allow to apply a set of sentences to an object collection or to a
multitude (arrays, vectors, multidimensional massive) without specifying the number of
cycles (that specification is difficult if the dynamic memory reservation used).

The syntax of that sentence is:
For Each element In group

Sentences
Next element

Example:

For Each obj In ctl.Tabs
 obj.Caption = LoadResString(CInt(obj.Tag))
 obj.ToolTipText = LoadResString(CInt(obj.ToolTipText))
Next

 Loops can be nested just as If statements are. Nested loops consist of an outer loop with
one or more inner loop. Each time the outer loop is repeated, the inner loops are reentered, their
loop-control expressions are reevaluated, and all required iterations are performed.
 The For instructions can be nested following the model:

For i...
 sentences
 For j ...
 sentences
 ...
 For k ...
 sentences
 Next k
 …
 Next j
 …
Next i

 Each For i associated with the line containing the Next sentence followed by the variable
designated as counter.

THE REPRESENTATION OF PROCESSING ALGORITHMS

124

 If the instruction line Next don’t contains the counter variable name then that associates
to the first appearing sentence For.
 If the line sentence Next contains the
counter variable then the association is
realized in the reverse order of For’s
instructions. In our case, the first cycle that
must be enclosed is that defined in the line
containing the sentence For k, the second
instruction Next closes the line containing the
instruction For j and the last closes the line
containing For i. In the case in which between
the sentences Next enclosing For sentences no
other sentences needed then is enough to place
a single Next sentence referencing, by
intermediate of a list, the counter variables of
that For’s.

 Example:
 For i...
 For j...
 sentences
 Next j , i

3.5 Commented Samples

I. We realize a generalization of the Asc algorithm so that the values (x and y) are passed

together with the comparison operator (relop) that can be '>', '<' and '='. Depending on
the value chosen for the comparison (relop) we are the case greater than, less than and
otherwise is the equality. The algorithm call the defined algorithm Exchange(x,y) to
realize the inter exchange (permutation) of the values, assigned at execution time (run
time) to the variables x and y, in the sense defined by the used relational operator
(comparison). The algorithm returns the values in the specified order (figure 3.20).

Sub Order(x As Variant, y As Variant, relop As Variant)
 Select Case relop

 Case "<"
 If x > y Then
 Exchange x, y
 End If
 Case ">"
 If x < y Then
 Exchange x, y
 End If

Figure 3.20 An algorithm for ordering two values

INFORMATICS: Computer Hardware and Programming in Visual Basic

125

 End Select
 End Sub

This code sequence is a possible implementation of the algorithm explained in the
flowchart from figure 3.20. The declaration of variables as Variant allows using the
subroutine Order() to do his action on any kind of data type of the values passed in arguments
(text, number, date, etc). The routine can be generalized to receive at input an array, vector or
multidimensional massive, or can be called as such from routines that processes such arrays
by passing in arguments pairs of values.

II. Given a set of n values v[i], i=1,2,3, …, n.
2.1 Build the function that compute the sum[Sum(v,n)] of this values (a).

(a) The function Sum adds a series v of n numbers

Function Sum(v As Variant, n As Integer) As Double
 Sum = 0 ‘ The initial value
 For i = 1 To n
 Sum = Sum + v(i)
 Next i
End Function

2.2 Build the function that compute the average [Avg(v,n)] of these values (b and b').

(b) The function Avg computes the means of a series of numbers
Function Avg(v As Variant, n As Integer) As Double
 Sum = 0
 For i = 1 To n
 Sum = Sum + v(i)
 Next i
 Avg=Sum/n
End Function
(b') The function Avg computes the mean of a series of numbers and uses the
function Sum defined at (a) point
Function Avg(v As Variant, n As Integer) As Double
 Avg=Sum(v,n)/n
End Function

2.3 Draw a flowchart that exponentiation a number x at the power n [Power(x,n)].
 Dissection of the power flowchart (figure 3.21):
- the Start symbol contains the name of algorithm and the call format. In the brackets is indicated
the list of arguments to be passed at call time;
- by i=1 we initialize the counter for the exponent, and we initialize the result to 1 (if n is 0 then
x0=1);

THE REPRESENTATION OF PROCESSING ALGORITHMS

126

- by pow=pow*x we compute the actual value of the
variable pow as a multiplication of the previous value
of the variable pow with the variable x;
- in the decision block we check how many times we
are realized the repeatedly multiplication. If the
multiplication is not realized n times we increase the
counter and then go to a new multiplication else the
algorithm return the result.
A possible implementation of the algorithm is one of
the following:

(a)
' The function Power exponentiation a number x to a power n
Function Power(x As Variant, n As Integer) As Double
 Dim pow As Double
 pow = 1
 For i = 1 To n
 pow = pow * x
 Next i
 Power = pow
End Function
(b)
' The function Power exponentiation a number x to a power n - compact
Function Power(x As Variant, n As Integer) As Double
 Power = 1
 For i = 1 To n
 Power = Power * x
 Next i
End Function

III. We want to solve now a more complex problem: we want to list a Fahrenheit to Celsius
correspondence table based on the computation formula:
 CELSIUSo = (5/9)*(FAHRENHEITo - 32)

The correspondence table will be displayed (figure 3.22) starting with the minimal value (min) 0
(zero) and ending with the maximal value (max) of 300 degrees and the computation and display
will be done from 20 to 20 degrees (pas). We use, to solve this problem, assignments
instructions, the function MsgBox to display the result and an instruction For that allow us to
repeat the execution of a group of sentences until a specified condition satisfied.

Figure 3. 21 An exponentiation algorithm

INFORMATICS: Computer Hardware and Programming in Visual Basic

127

The program looks as:
0 Sub Coresp_Temp()
1 Dim min, max, pas, fahrenheit#, celsius, tabel
2 ' Computation of the correspondence Co- Fo
3 min = 0 ' Starting Value
4 max = 300 ' Ending Value
5 pas = 20 ' From … to … degrees
6 tabel = "Fahrenheit | Celsius " & Chr(13) & Chr(10) & _
 String(36, "-") & Chr(13) & Chr(10)
7 For fahrenheit = min To max Step pas
8 celsius = (5 / 9) * (fahrenheit - 32)
9 tabel = tabel & Right(Space(12) & Format(fahrenheit, "#000"), 12) &_
 " " & Right(Space(12) & Format(celsius, "#000.00"), 12) & Chr(13) & Chr(10)
10 Next fahrenheit
11 MsgBox tabel, , "Conversion Fahrenheit-Celsius"
 End Sub

Comments

Line 0 is that in which the type of used procedure and scope declared (public subroutine in
our case) together with the name that can be used later on to call the procedure
(Coresp_Temp);

Notes ! The numbers associated to the lines can be typed as such in the source
program (they keep from previous versions of Basic). The lines that follows after the
line numbered 6 and the line numbered 9 are not numbered because they continuation
lines of previous sentence.

 A continuation is specified by placing an _ (underscore) character to the right of the
line. The writing of many instructions on the same line is also allowed by placing a : (colon)
character before each instruction.

Line 1, Dim min, max, pas, fahrenheit#, celsius, tabel declares and reserve the needed memory
space. In that line the variables min, max, pas, celsius and tabel, that haven’t a data type
specification, are of Variant data type (without a specific data type but adapted to those of the
first expression in which is used) and fahrenheit# is a double precision variable;

Line 2 is a comment line introduced by an ' (single apostrophe); his role is to explain the role
played by the routine;

Lines from 3 to 5 are assignment statements. What is in the left of the = (called assignment
operator) symbol are variable names (min, max, pas). What is in the right represents a constant
and/or expression; in that case they are numbers and are called numeric constants. On these lines
we define two instructions: one assignment and the second (delimited from the first by ') a
comment.

THE REPRESENTATION OF PROCESSING ALGORITHMS

128

Line 6 is an assignment line that initialize the
variable named tabel with a character string, formed
by two lines, string obtained by evaluating the string
expression "Fahrenheit | Celsius " & Chr(13) &
Chr(10) & String(36, "-") & Chr(13) & Chr(10). In
that expressions appears string constants (enclosed
between “) concatenated (by intermediate of &
operator) with the result of evaluation of string
(character, text) manipulation functions (as Chr,
String). The character _ (underscore) appearing on
line 6 instruct the compiler (or interpreter) that the
command line is continued to the line that follows;

Line 7 it introduces a processing cycle that expressed
in a natural language as: For the variable named
fahrenheit starting with the value min
(fahrenheit=min) To value max, with a Step equal to s
(from step by step) execute the instructions from the
lines that follows until the program line containing the
sentence to repeat (Next fahrenheit, line 10). The
execution ends when the value of fahrenheit is greater than max. To each executed cycle, the
value of s is added to the variable fahrenheit.

Line 8 transforms the Fahrenheit degrees in Celsius degrees;

Line 9 transform the computed values in a character string by using string functions and
complete a table line.

IV. We want to keep the marks obtained by a student over 5 years of studies in tables of the
form:

Student First name & Last name
Studies Year Obtained Marks

Discipline 1 Discipline 2 … Discipline 10
I
II
III
IV
V

 In the table below, on the rows numbered from I to V, the studies years are enumerated,
and on columns, we have ten disciplines, representing the disciplines from each year.
 By the notation Mark 1,5 we define the mark obtained in the first year to the discipline 5.
This table can be represented in computer as a bi-dimensional array or matrix. If we denote by i
and j two variables by which we designate a line (i), and respectively a column (j) from the table
then by Mark i, j we designate the mark obtained in the year i to the discipline j.
The computation formula (or the algorithm) used to determine the average is:

Figure 3. 22 The display of Fahrenheit-
Celsius correspondence table

INFORMATICS: Computer Hardware and Programming in Visual Basic

129

)10*5/(
5

1

10

1
,∑∑

= =

=
i j

jiMarkAverage

The sum of all marks from the table is computed by adding the value Marki,j to the sum obtained
by adding the previous values (by following the way: after each adding operation we obtain a
subtotal to which the next value is added).
The computation program can be:

Sub Average_Marks()
 Dim Mark(5, 11), i As Integer, j As Integer: Rem the definition of
the table in the internal memory
 Dim Average As Double, Name As Variant
 Read_Marks Name, Mark
 Average = 0
 For i = 1 To 5
 For j = 1 To 10
 Average = Average + Average(i, j)
 Next j
 Next i
 Average = Average / (10 * 5)
 MsgBox "Studentul " & Name & Chr(13) & Chr(10) & "are media generala: " & Average
End Sub

 In the table Mark, we must fill, in each cell (called element) the obtained Mark. We fill
the marks by reading them from a file where previously stored or from the keyboard. The table
defined by the sentence Dim Mark(5,10) is called usually matrix, bidimensional array or
bidimensional massive.

 In this example the procedure Read_Marks is defined as follows:

Sub Read_Marks(Name As Variant, Mark As Variant)
 Name = InputBox("First Name & Last Name:", "Example of using VB")
 For i = 1 To 5
 For j = 1 To 10
 Mark(i, j) = InputBox("Name:" & Name & Chr(13) & Chr(10) & _

"Mark: (" & i & " , " & j & ") ", "Example of using VB: Marks Input")
 Next j
 Next i
End Sub

In this example we suppose that the user types numbers between 0 (zero) and 10 (ten) as
integer values. Because the function InputBox() reads text values the mistakes (any other
characters than digits and/or spaces between digits) will produces a computation error
message. To avoid that is necessary to test whether the typed value is number or not.

' Read_Number reads a value from keyboard and verifies
' if number or not (a process called validation). If the value is not a number
' signals that to the user who can choose between cancel or resume the operation from typing

An output sample

THE REPRESENTATION OF PROCESSING ALGORITHMS

130

Function Read_Number(xNr As Variant, denNr As Variant) As Variant

 Dim Answer As String
 Do While True = True ' an infinite cycle
 xNr = InputBox("Type the value for " & denNr & ":", "Example")
 If Not (IsNumeric(Trim(xNr))) Then
 Answer = MsgBox("The Value for " & denNr & " must be Numerical !", vbOKCancel, _
 "Example") ' This is a continuation line
 If Answer = 2 Then ' Cancel Button pressed
 Read_Number = "*Cancel" ' The returned value to the caller is *Cancel
 Exit Do ` Exit from the infinite cycle and return to the caller
 End If
 Else
 Read_Number = Trim(xNr) ' The returned value will be the number
 ' without extra spaces (to the left or right)
 Exit Do ' Exit from the infinite cycle and return to the caller
 End If
 Loop ' Restart the cycle
End Function

V. The following example illustrates how the arithmetic operators and intrinsic functions
used:

1 Function Data_Paste(An_Dorit As Variant) As Date
2 Dim D As Integer, E As Integer
3 D = ((An_Dorit Mod 19) * 19 + 15) Mod 30
4 E = (((An_Dorit Mod 4) * 2 + (An_Dorit Mod 7) * 4) + 6 * D + 6) Mod 7
5 Data_Paste = DateAdd("d", D + E, CDate("04/04/" & Trim(An_Dorit)))
6 End Sub

Line 1. Declares the name of the function (Data_paste – Easter date) and the input argument
required (An_Dorit As Variant – Wanted year) and returns a Datetime type value;

Line 2. Working variables D and E declarations as integers (represent years);

Line 3 and 4. Compute the value for D and, respectively E, as described in the algorithm
introduced earlier. In both formulas are exploited the parenthesis evaluation rule and operator
precedence rule. In the formula D=((An_Dorit Mod 19) * 19 + 15) Mod 30, first is computed
the modulus 19 of An_Dorit and second this value is multiplied by 19; in the third step to the
previous value is added the constant 15; in the fourth step the modulus 30 is obtained from the
last value and then assigned to D;

Line 5. In this line a string date value is obtained as a concatenation of strings An_Dorit
(Variant value) with 4 April (“04/04/”) from which a date value is obtained as a conversion
(CDate), and to that obtained date is added the number of days (“d”) in terms of date
(DateAdd – this function allow to add days, month, years to a date and to obtain a correct
date; it take account of the number of days in which month and if a year is leap year or not).
The function requires three parameters separated by , (comma) character, with the general

INFORMATICS: Computer Hardware and Programming in Visual Basic

131

format DateAdd(string1,integer,string2). The first parameter of that function (string1)is the
unit of the added value (“d” still for days) and is given as a string literal value (a value
enclosed in quotation marks). The second parameter (integer) gives after how may time units
from the initial date (string2) the new date. This parameter is given as an expression (D+E),
where both D and E are integers as defined in line 2 and as computed in lines 3 and 4,
respectively. The result of adding these two integers will be an integer too, as required by the
function call model. The last required parameter (string2) represents the beginning date (April
4 of wanted year – An_Dorit) and is given as a string concatenation expression formed by the
literal value “04/04/” to which is concatenated (by the concatenation operator &) the desired
year Trim(An_Dorit). The An_Dorit variable is of Variant data type and the Trim functions
eliminates the trailing blanks may be to the left or to the right of the value. By using this
function we prevent the case the user type a year in the text box of the dialog box preceded or
followed by space characters (but we don’t prevent the spaces between digits; if you want do
that use the function ReadNumber from example IV). The value obtained is assigned to the
name of the function (Data_Paste=…) as the value to be returned to the caller;

Line 6. End the function execution and returns the processing control to the caller.

VI. The following procedures implement the division conversion method for decimal
numbers to any base that is a power of 2.

‘ A cell rezervation and initialization with the the string of hexadecimal system

 Dim myDigits As String = "0123456789abcdef"

‘ Ask the user to type the values for number and base in a dialog box. Each value typed by user is
‘ checked to be numeric. If not numbers a message is given to the user and execution stops. The
‘ function dec2base(decimal-number,new-base)

 Sub Dec2IntAnyBase()
 Dim b As String
 Dim d As Integer, bb As Integer
 d = InputBox("Type an integer number.")
 If IsNumeric(Trim(d)) = False Then
 MsgBox("Type an integer value!", vbCritical + vbOKOnly)
 Exit Sub
 End If
 b = InputBox("Type an integer number for base.")
 If IsNumeric(Trim(b)) = False Then
 MsgBox("Type an integer value!", vbCritical + vbOKOnly)
 Exit Sub
 End If
 bb = Int(Val(Trim(b)))
 b = dec2base(d, bb)
 If b <> "*Err" Then
 MsgBox(d.ToString & " in base " & bb.ToString & " is " & b)
 End If
 End Sub

THE REPRESENTATION OF PROCESSING ALGORITHMS

132

‘ Receives at call time a copy of the values for number and base and determines if the wanted base is
‘ a power of 2 (two) and which one. If not a power of two or the base minus one is zero signals that
“ to the user and stops processing.
‘ Extracts the digit in the new base from the string myDigits from the position determined by
‘ anding the number with the base-1
‘ Starts a loop as long as the number not yet less than the most significant digit in the new base
‘ Divides the number by the new base reprezented as 2 at the power determined previously here
‘ Extracts the digit in the new base from the string myDigits from the position determined by
‘ anding the number with the base-1
‘ Restarts the loop
‘ Returns the value to the caller

 Function dec2base(ByVal d, ByVal b) As String
 Dim newD As String, bb As Integer, b1 As Integer
 bb = whichPowerOf2(b)
 b1 = b - 1
 If bb <= 0 Or b1 = 0 Then
 dec2base = "*Err"
 Exit Function
 End If
 newD = Mid(myDigits, (d And b1) + 1, 1)
 Do While (d > b1)
 d >>= bb
 newD = Mid(myDigits, (d And b1) + 1, 1) & newD
 Loop
 dec2base = newD
 End Function

‘ This function determines if a number is a power of two or not.
‘ If the number is a power of two determines that power and returns to caller that value

 Function whichPowerOf2(ByVal d) As Integer
 Dim nr As Integer = 0, dd As Integer
 dd = d
 If d < 2 Then
 Return 0
 End If
 If (d - 2 * (d >> 1)) <> 0 Then
 MsgBox("The base is not a power of two!", vbCritical + vbOKOnly)
 whichPowerOf2 = 0
 Exit Function
 End If
 Do While d > 1
 d >>= 1
 nr += 1
 Loop
 If dd <> 2 ^ nr Then
 MsgBox("The base is not a power of two!", vbCritical + vbOKOnly)
 whichPowerOf2 = 0
 Exit Function
 End If
 Return nr
 End Function

INFORMATICS: Computer Hardware and Programming in Visual Basic

133

VII. The conversion algorithm implemented as a Class. The algorithm for conversion
implemented with basic arithmetic operators (+,-,*,/). The clarity of the code have a greater
priority than the optimality and shortest of the code, in this example (and also in most of
examples introduced here).

When the button Convert is pressed the event procedure convertButton_Click is called that
realizes the following operations:

1. Rezervation of memory cells used to store the number and new base:
 Dim Ni As Long, b As Long

2. Check if what typed by user in the text box Number is a number. If not a number
signals that by a message and returns in the form to retype the number or end
processing:

 If Trim(Me.decNumber.Text) = "" Or IsNumeric(Trim(Me.decNumber.Text)) = False Then
 MsgBox("Err. The value you want convert is not a number !", vbCritical + vbOKOnly)
 Me.decNumber.Focus()
 Exit Sub
 End If

3. Check if what typed by user in the text box Base is a number. If not a number signals
that by a message and returns in the form to retype the number or end processing:

 If Trim(Me.newBase.Text) = "" Or IsNumeric(Trim(Me.newBase.Text)) = False Then
 MsgBox("Err. The value for new base is not a number !", vbCritical + vbOKOnly)
 Me.newBase.Focus()
 Exit Sub
 End If

4. Converts the strings of digits for number and base in integer values:
 Ni = Trim(Me.decNumber.Text)
 b = Int(Val(Trim(Me.newBase.Text)))

The Val() function convert a string in a real number. If the string is empty or space the
converted value is 0.
Int() convert the base in an integer number and ensure that the base is integer. All
these operations must be realized because the user types in a text box that accepts any
combination of characters.

5. If the new base is 0 then an error message displayed and the control is passed to the
user to fill in the form a valid value or end:

THE REPRESENTATION OF PROCESSING ALGORITHMS

134

 If b = 0 Then
 MsgBox("Err. Actually according to all algebric theory divison by 0 (zero) not supported !" & _
 Chr(10) & Chr(13) & "A fractionary number is converted to integer!", vbCritical + vbOKOnly)
 Me.newBase.Focus()
 Exit Sub
 End If

6. Calls the function to convert the number in the new base IntegerToBinary(Ni, b), and
stores the value in form’s box Converted Value:

Me.convertedValue.Text = IntegerToBinary(Ni, b)

Public Class Convesion

Private Sub convertButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles convertButton.Click

 Dim Ni As Long, b As Long
 If Trim(Me.decNumber.Text) = "" Or IsNumeric(Trim(Me.decNumber.Text)) = False Then
 MsgBox("Err. The value you want convert is not a number !", vbCritical + vbOKOnly)
 Me.decNumber.Focus()
 Exit Sub
 End If
 If Trim(Me.newBase.Text) = "" Or IsNumeric(Trim(Me.newBase.Text)) = False Then
 MsgBox("Err. The value for new base is not a number !", vbCritical + vbOKOnly)
 Me.newBase.Focus()
 Exit Sub
 End If
 Ni = Trim(Me.decNumber.Text)
 b = Int(Val(Trim(Me.newBase.Text)))
 If b = 0 Then
 MsgBox("Err. Actually according to all algebric theory divison by 0 (zero) not supported !" & _
 Chr(10) & Chr(13) & "A fractionary number is converted to integer!", vbCritical + vbOKOnly)
 Me.newBase.Focus()
 Exit Sub
 End If
 Me.convertedValue.Text = IntegerToBinary(Ni, b)
 End Sub

‘ This is the code associated to the Close button

Private Sub closeButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles closeButton.Click

 Me.Close()
 End Sub

‘This is the code associated to the Clear button (emptyies the text boxes)

Private Sub cleanBoxes_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles cleanBoxes.Click

 Me.decNumber.Text = ""
 Me.newBase.Text = ""
 Me.convertedValue.Text = ""
 End Sub

The function IntegerToBinary() receives as arguments a copy of the number to be
converted and the new base and returns a string containing the number in the new base. If the

INFORMATICS: Computer Hardware and Programming in Visual Basic

135

base is less than or equal to 16 it uses the hexadecimal digits to express the new number
othewise the digits in the new base are written by using the decimal digits and separated by
dots. The function realizes the operations:

1. Reservation of memory cells required by the algorithm:

 Dim newNi As String, oldNi As Integer

2. The memory cell tht will store the number in the new base is erased:
 newNi = ""

3. A cycle is started while the number to be converted not 0 (Ni>=1)

4. The value of Ni preserved in the variable oldNi and a new value for the number is

computed as the integral part of the division of the number Ni to the new base b:
 Ni = Int(Ni / b)

5. Check if the base is grather than 16 and if it is add the digit in the new base by
concatenating the string of those digits obtained in the previous steps to “.” and the
fraction part of the previous step division (in reverse order); if the base less than or
equal to 16 concatenates the digit supplied by the function isTheDigit():

 If (b) > 16 Then
 newNi = (oldNi - (Ni * b)) & IIf(newNi <> "", ".", "") & newNi
 Else
 newNi = isTheDigit((oldNi - (Ni * b))) & newNi
 End If

6. Go to a new cycle (Loop - step 3).

7. If the convesion ends then the value for the number in the new base is assigned to the

function name and returned to the caller of that function:
 IntegerToBinary = newNi

 Function IntegerToBinary(ByVal Ni, ByVal b) As String
 Dim newNi As String, oldNi As Integer
 newNi = ""
 Do While (Ni >= 1)
 oldNi = Ni
 Ni = Int(Ni / b)
 If (b) > 16 Then
 newNi = (oldNi - (Ni * b)) & IIf(newNi <> "", ".", "") & newNi
 Else
 newNi = isTheDigit((oldNi - (Ni * b))) & newNi
 End If
 Loop
 IntegerToBinary = newNi
 End Function

THE REPRESENTATION OF PROCESSING ALGORITHMS

136

This function is very simple: it defines a vector of 16 characters and initialize each one
with the corresponding hexadecimal digits represented as characters. The function receives a
value computed by following the conversion algorithm steps and returns a character string
containing the digit in the new base (for example for 10 returns “a”). An optimized (a little
strange!), method can be defined by using the bitwise operators (you can see an
implementation in VB in example VI and in the site http://www.avrams.ro/conversions.htm).

 Function isTheDigit(ByVal i) As String
 Dim dg(0 To 15) As String
 dg(0) = "0"
 dg(1) = "1"
 dg(2) = "2"
 dg(3) = "3"
 dg(4) = "4"
 dg(5) = "5"
 dg(6) = "6"
 dg(7) = "7"
 dg(8) = "8"
 dg(9) = "9"
 dg(10) = "a"
 dg(11) = "b"
 dg(12) = "c"
 dg(13) = "d"
 dg(14) = "e"
 dg(15) = "f"
 isTheDigit = dg(i)
 End Function
End Class

