
1

Chapter 6.
Steps in Computer

Problem Solving Process

6.1. Information System Life Cycle

6.2. Steps in computer problem solving process

6.3. Steps for preparing a program for execution

6.4. Executing a program

GENERAL INFORMATICS

Information System

Management System

Information System

Work System

Figure 1.28. The information
system

The enterprise information system is the system that
includes all enterprise components whose actions are
of informational type. In each information system on
retrieve varies elements: decision makers, users,
processing devices and system software together with
application programs, communication devices etc.

The main objective of the information system is to supply, to the enterprise decision
makers, the needed information to control, decide and act, that means those
information that have value for decision maker. The information system capture the
information that comes from the work system or from the external environment,
process that information and communicate to the management system that take
decisions on the basis of that information, decisions that are send in turn to the
information system and this one communicate this information.

2

Information (Informatic) System Categories

Information Systems

Operation Support Systems Management Support Systems

Transaction
Processing Systems
(TPS)

Industry Process
Control Systems

Knowledge Work
Systems (KWS) and
Office Automation

Management
Information Systems
(MIS)

Decision Support
Systems (DSS; EIS)

Figure 1.29. The categories of information (informatic) systems

Information System

Figure 1.30. The relationship between the levels of management and the
category of the informatic system

3

Information System

Figure 1.31. The general frame for analyzing information system

Information (Informatic) System Life Cycle

Figure 1.32. The waterfall
lifecycle

4

Information System Life Cycle

Figure 1.33. The spiral model of systems development

Information System Life Cycle

Figure 1.35. The life cycle of information
systems

5

t The problem solving process starts with the
problem specification and ends with a
concrete (and correct) program.

t The steps to do in the problem solving
process may be: problem definition,
problem analysis, algorithm development,
coding, program testing and debugging, and
documentation.

Steps in problem solving process by using a programming environment

t The stages of analysis, design, programming,
implementation, and operation of an information
system forms the life cycle of the system.

t We briefly describe the steps in problem solving
process by using a programming environment (it
can allow the “around” application programming
by the possibility of generating programs from
general templates, for example) and by
considering only a specific process from the
whole system. In this context the stages can be:

6

t 1st. Defining/Specifying the problem [Theme] -
by answering to questions as:
What the computer program do?
What tasks will it perform?
What kind of data will it use, and where will get
its data from?
What will be the output of the program?
How will the program interact with the computer
user?

Specifying the problem requirements forces
you to state the problem clearly and
unambiguously and to gain a clear
understanding of what is required for its
solution.

Your objective is to eliminate unimportant
aspects and to focus on the root problem,
and this may not be as easy as it sound.

7

t 2nd. Analyzing the problem [Analysis]
involves identifying the problem (a) inputs,
that is, the data you have to work with; (b)
outputs, the desired results; and (c) any
additional requirements or constraints on
the solution.

t 3rd. Algorithm development: find an
algorithm for its solution [Design].

Write step-by-step procedure and then verify
that the algorithm solves the problem as
intended.

8

The development can be expressed as:
- pseudocode – a narrative description of the

flow and logic of the intended program, written
in plain language that expresses each step of
the algorithm;

- flowchart - a graphical representation that uses
graphic symbols and arrows to express the
algorithms.

t After you write the algorithm you must realize
step-by-step simulation of the computer execution
of the algorithm in a so called desk-check process
(verifying the algorithm).

t 4th. Coding (or programming): is the
process of translating the algorithm into the
syntax of a given programming language
[Programming]. You must convert each
algorithm step into one or more statements
in a programming language.

9

t 5th. Testing and debugging:
- testing means running the program, executing all

its instructions/functions, and testing the logic by
entering sample data to check the output;

- debugging is the process of finding and correcting
program code mistakes:
• syntax errors;
• run-time errors;
• logic errors (or so called bugs).

- field testing is realized by users that operate the
software with the purpose of locating problems.

t 6th. Documenting the program by:

• internal documentation;
• external documentation.

10

t 7th. Integrate the program in the data
process flow (Implementation) and use the
program to solve problems [Exploitation].

Figure 3. 1 Steps for preparing a program for execution

Steps for preparing a program for execution

11

Executing a Program

Figure 3. 2 Executing a program

Virtual Memory

Definition.

To use the processor and the I/O facilities efficiently, it is desirable to
maintain many processes, as possible, in main memory. In addition, it is
desirable to free programmers from size restrictions in program development
than to restrict them with small sizes (that happened in the older computers).
The restriction to a predefined size redirects the programmers effort from the
use of better programming techniques to a continuously effort to make fit in
that size a solution, not necessarily the optimal one. The way to address both
of these concerns is virtual memory (VM). Virtual memory systems are an
abstraction of the primary memory in a von Neumann computer. Even in a time
of decreasing physical memory costs, contemporary computers devote
considerable resources to supporting virtual address spaces that are much
larger than the physical memory allocated to a process. Contemporary
software relies heavily on virtual memory to support applications such as
image management with huge memory requirements.

12

Virtual Memory

The virtual memory abstraction is built on the idea of runtime address binding.
The compiler and the linkage editor create an absolute module that the loader
traditionally binds to physical addresses before the program executes.
Hardware facilities enable a memory manager to automatically load portions of
a virtual address space is left in secondary memory. With virtual memory, all
address references are logical references that are translated at run time to real
addresses. This allows a process to be located anywhere in main memory and
for that location to change over time. Virtual memory also allows a process to
be broken up into pieces. These pieces need not be contiguously located in
main memory during execution end, indeed, it is not even necessary to all of
the pieces of the process to be in main memory during execution.

Virtual Memory

Address Space Mapping
The components of a source program are represented using: symbolic identifiers,
labels and variables these entities are elements of the name space. Each symbolic
name in the name space is translated into an absolute image by the compiler and link
editor. Each virtual address is converted to a physical address in the primary memory
when the absolute image is translated into an executable image is translated into an
executable image by loader (see figure 6.1).

Figure 6.1. Address space mapping

13

Virtual Memory

Address Space Mapping
Each program can contain data and instructions whose allocation, realized by the
compiler starts with 0. When we load many programs into the main memory (for
example in Windows you want use simultaneously Word, Paint and Power Point to
realize data transfers by using the clipboard between this applications) these programs
cannot start from address 0; instead, they starts from an address allowed by the
operating system. In this context the hardware must distinguish between the relative
address (arel) and the absolute address (aabs). A relative address is considered relative
to the memory address to which the program is loaded (we consider for the shake of
simplicity that the program is continuously loaded starting with that address). If we
store somewhere this address (base address – abase) allowed to the program then the
computation of the absolute (physical) address will be simply done by the formula:
aabs=abase+arel.

Virtual Memory

Implementing Virtual Memory

To basic approaches to providing virtual memory are: paging and
segmentation.

Paging. With paging, each process is divided into relatively small, fixed-size pages.
Paging systems transfer fixed-sized blocks of information between primary and
secondary memories. Because of the fixed pages size and page frame size, the
translation from a binary virtual address to a corresponding physical address is
relatively simple, provided the system has an efficient table lookup mechanism.
Paging systems use associative memories to implement page translation tables.
Paging uses single-component addresses, like those used to address cell within
any particular segment. In paging, the virtual address space is a linear sequence of
virtual address (a format that differs from the hierarchical segmentation address
space. In a paging system, the programmer has no specific mechanism for
informing the virtual memory system about logical units of the virtual address
space, as is done in segmentation. Instead, the virtual memory manager is
completely responsible for defining the fixed-size unit of transfer – the page – to be
moved back and forth between the primary and secondary memories. The
programmer need not be aware of the units of virtual address space loaded into or
unloaded from the physical memory. In fact, the page size is transparent to the
process.

14

Virtual Memory

Implementing Virtual Memory

Segmentation. Segmentation provides for the use of pieces of varying size. It is also
possible combine segmentation and paging in a single memory-management scheme.
Segmentation is an alternative to paging. It differs from paging in that the unit transfer
between primary and secondary memories varies. The size of the segments, are also
explicitly known by the programmer. Translating a segment virtual address to a
physical.
Segmentation is an extension of the ideas suggested by the use of relocation-limit
registers for relocating and bound checking blocks of memory. The program parts to
be loaded or unloaded are defined by the programmer as variable-sized segments.
Segment may be defined explicitly by language directives it implicit by program
semantics as the: text, data and stack segments created by the UNIX C compiler.
address is more complex that translating a paging virtual address.

Virtual Memory

Every Win 2k process is given a fixed-size virtual address space – 4 gigabytes
(GB), which, of course, is much larger than the amount of primary memory in any
contemporary computer. The process does not necessarily use all of the virtual
address space – only as much as it need. Ordinary the .EXE for a program is very
much smaller than the address space. Part of the address space, usually 2 GB, is
used to reference addresses used by the OS (it is the supervisor space). Even
though the supervisor space portion of the address space exists in a process’s
virtual address space, the memory can be referenced only by a thread if the
processor is in supervisor mode. The OS needs some means of determining the
amount of the address space that the process intendeds to use. The link editor
builds the static execution image in an .EXE file that will generally define the
address space. Dynamically linked libraries an anther dynamically allocated
portions of the address space can be added to the virtual address space at
runtime. There are two phases to dynamically adding addresses to the address
space (see figure 6.6)

15

Virtual Memory

Figure 6.6. Windows NT Paging System

Virtual Memory

1. Reserving a portion of the address space called a region;
2. Committing a block of pages in the region in the address space.
A thread in a process can dynamically reserve a region of virtual addresses without

actually causing anything to be written to the secondary storage page file (also
sometimes called the paging file). A thread in the process may also
subsequently release a region of addresses it previously reserved.

The second phase is to commit addresses that were previously reserved. Once a
portion of the address space has been committed, space is allocated in the page
file. If a thread in the process that references committed memory, the page
containing the referenced address will be loaded from the page file into the
primary memory. Each processor support a particular allocation granularity to
determine the minimum size of a block of addresses that can be reserved.

A virtual memory-management scheme requires both hardware and software. The
hardware support is provided by the processor. The support includes dynamic
translation of virtual address to physical address and the generations are
interrupted when a referenced page or segment is not in main memory.

16

Process Description, Control, and Management

Process. Let P be a program described in a programming language that we designate
by the term Language(P). A process, denoted by Process(P), of P is a description of
a series of actions or operations, needed to completely solving of P, description
realized in such a way as that in which the program executes in a virtual processor
that implements the Language(P). A process is nothing else than a description of a
program behavior and, consequently, a running program can be considered a
process. However, that definition of a running program as a process is not quite
exactly.

Examples:
Process(P{p, q}): Process1(p) and

Process2(q);
P*{p, r} with p€ P{p, q}. P and P* are

different programs.

Process Inference

Process Description, Control, and Management
Process Inference

Figure 7.1. Running Programs Context Switching

17

Process Description, Control, and Management

Figure 7.2. The interaction between service programs and a program P that requires a
service Si

Process Description, Control, and Management

In some operating systems there are three levels of concepts
used that relate to what is traditionally referred to as a process:
• Thread: A dispatch-able unit of work;
• Process: A collection of one or more threads and associated system
resources (such as memory, opened files, and devices);
• Session: A collection of one or more processes associated with a user
interface (menus, switchboard, keyboard, display, mouse etc).

18

Process Management

Process management refers to the full spectrum of OS services to support
the orderly administration of a collection of processes .
The processor manager is responsible for creating the environment in
which the sequential process executes, including implementing resource
management.
The community of processes that exists in the OS at any given time is
derived from the initial process that is created when the computer begins
operation. The initial process boots up the OS, which, in turn, can create
other processes to service interactive users, printers, network connections
and so on. A program image is created from a set of source modules and
previously compiled library modules in relocate-able form. The link-editor
combines the various relocate-able object modules to create an absolute
program in secondary memory. The loader places the absolute program
into the primary memory when a process executes the program. The
program image, along with other entities that the process can reference,
constitutes the process address space. The address space can be stored
in different parts of the machine’s memory hierarchy during execution.

Process Management
Figure 7.3. Organizing
microkernels in groups of
modules

Peripheral Devices

Figure 7.4. Logical Organization
of Process Manager

19

Process Creation and Termination

The life of a process is bounded by its creation and termination. Between this
boundaries and including the boundaries the process can switch into several states
(we assume a computer with a single processor), such as:
• New: The process that has just been created but has not yet been admitted to the
pool of executable processes by the operating system;
• Ready: The process is in main memory and available for execution;
• Ready, suspend: The process is in secondary memory but is available for
execution as soon as it is loaded into main memory;
• Blocked: The process is in main memory and awaiting an event;
• Blocked, suspend: The process is in secondary memory and awaiting an event;

In anyone of the Blocked states, the process exists, is known to the operating
system, and is waiting for an opportunity to execute.

• Running: The process that is currently being executed. From time to time, the
currently running process will be interrupted and the dispatcher portion of the
operating system will select a new process to run.
• Exit: A process that has been released from the pool of executable processes by
the operating system, either because it halted or because it aborted for some
reason.

Process State Transition

Figure 7.10 The state transition diagram with two suspend states

20

Process State Transition

Figure 7.11. The principle of a queuing mechanism with event specialized queue

Contents
6.1. Information Systems

General Descriptions and Categories
The Information System Development Life Cycle
Information System Design - General Considerations

6.2. The Steps of Solving a Problem By Means of Computer
6.3 The General Steps for Preparing a Program for Execution
6.4 Executing a Program
6.4.1 Virtual Memory

Definition of Virtual Memory
Address Space Mapping
Implementing Virtual Memory
Paging
Windows 2000 [Win2k] Virtual Memory
Segmentation

6.4.2 Process Description, Control and Management
The Process Concept
Process Management - an Introduction
The Creation and Termination of a Process
Process State Transitions

21

Bibliography
1.[Av.00]Avram Vasile - Sisteme de calcul si operare, volumul II,
Editura Dacia Europa Nova Lugoj, 2003

2. [AvDg.03]Avram Vasile, Dodescu Gheorghe – Informatics:
Computer Hardware and Programming in Visual Basic, Editura
Economica, Bucuresti, 2003, (Chp. 1 pages 46-52; Chp. 3 pages 86-
89)
3. Gh. Dodescu, V. Avram: Informatics: Operating Systems and
Application Software, Ed.� FRQRP LF a, Bucuresti, 2005 (Chp. 6
pages 123-128 and139-142; Chp. 7 pages 147-159)

