
1

Chapter 4. Object Oriented
Programming And Windows

Basics

4.1. VB Projects

4.2. Properties

4.3. Methods

4.4. VB Procedures
4.4.1 SUB procedures
4.4.2 FUNCTION procedures

General Informatics

Visual Basic Projects

A project is the collection of files you use to build an
application. A VB project (stored in a file with .vbp
extension) can include different types of files and
objects.

In VB the object and class names are shown in the
property window. All objects are created as identical
copies of their class. Once they exist as individual
object, their properties can be changed. In
programming an object provide code you don’t have to
write. Each Object in VB is defined by a class.

2

Visual Basic Projects

A project can include different types of files and objects:
- form modules (.frm and .frx);
- class modules (.cls);
- standard modules (.bas);
- resource files (.res);
- ActiveX Documents (.dob);
- user Control and Property Page Modules (.ctl, .pag);
- components;
- ActiveX Controls (.ocx);
- Insertable Objects (Worksheets, Word Documents, …)
- ActiveX Designers;
- Standard Controls (toolbox).

Add and Remove files. Making executables.

Figure 4. 1 Representation of an object

Object. An object is an encapsulation of data
structures (the static properties of the modeled system)
with program code that manages the structures
(dynamic properties of the modeled system) (figure
4.1).

Object Oriented Programming

3

In programming environments the objects are identified
by a unique name (we reference that name by
objectName) assigned by the designer or by the
system. The object name is used to qualify his
components (attributes and methods) in constructions
of the form:

objectName.attributName

or

objectName.methodName.

t Messages. All processing involves sending messages
to objects. Messages are the language of interaction
which you use to express yours computing
requirements to objects. Messages request services
from an object in terms of its external interface.

t Methods are the algorithms which are performed by an
object in response to receiving a message. Methods
represent the internal details of the implementation of
an object.

4

An object class describes a set of object instance that
have similar data characteristics, behavior,
relationships to other objects and real-world meaning.
Objects that are members of an object class share
some attribute type and behavior type. Object
instances that are members of the same class share a
common real-world meaning in addition of their shared
attributes and relationships (figure 4.2)

Figure 4. 2 Class and Objects

An event is an action recognized by an object (such
as clicking the mouse or pressing a key). Events are
things the object does; you can write code to be
executed when event occur.

Event driven applications execute code in response
to an event. In VB the objects automatically
recognize a predefined set of events. A section of
code - an event procedure - corresponds to each
event. The types of events recognized by an object
vary, but many types are common to most control.
Events are triggered when some aspect of object is
changed.

5

A typical sequence of events in an event_driven
application is the following:

1°. the application starts and a form is loaded and
displayed;

2°. the form (or a control on the form) receives an event.
The event might be caused by the user (ex: pressing a
button), by the system (ex: an execution that exceeds a
time limit) or indirectly by the code of the application (for
example a Load event to load and display a form).

3°. if there is code in corresponding procedure (for
example in editing window a double-click can be nothing),
it executes;

4°. the application waits for the next event.

Properties are data that describe an object. You can
change an object’s characteristics by changing its
property. The properties are the attributes you set or
retrieve. Some properties can be set at design time and
others can be set only at runtime (you must write code to
set them).

The properties can be:
- read-write properties – you can set or get them at runtime;
- read-only properties – you can only read them at runtime.

To set a value of a property, use the following syntax:

object.property=expression

To get the value of a property, use the following syntax:

variable=object.property

6

Examples of manipulating some properties of
objects:

• Caption:
object.Caption[=string]

• Visible:
object.Visible[=boolean]

• Enabled:
object.Enabled[=boolean]

• Auto Redraw:
object.AutoRedraw[=boolean]

• Text boxes the text property:
object.Text[=string]

Methods are part of objects just as properties are. They
can affect the values of properties. Because the methods
perform actions they can have arguments. When you
use a method in code, how you write the statement
depends on how many arguments the method requires,
and whether the method returns a value.

The general syntax can be expressed as:

[variable=]object.method[(argument_list)]

When a method does not take arguments, you write the
code using the following syntax:

object.method

7

Some Events, Methods and Properties on
Forms and/or controls:
• To load/unload a control or form into memory:

[Load/Unload] object
• To hide a form object:

object.Hide
• To clear graphics and text generated at runtime
from a form, image or Picture Box:

object.Cls
• To refresh an object (a complete repaint)

object.Refresh
• To move the focus to a specified object:

object.SetFocus
• To display a form:

object.Show[[style],[ownerform]]

Figure 4. 3 Encapsulation

Encapsulation provides a conceptual barrier around
an object, preventing clients of an object from viewing
its internal details. The encapsulation (figure 4.3) can
provide appropriate barriers for various levels of
abstraction in a system model.

Each object class must have an external interface defining the
outside view of the class and an implementation that defines the
mechanisms that provide the behaviors the object must be
exhibit.

8

Figure 4.4 One unified hierarchy of objects

Hierarchy and Inheritance

Objects and their organization can provide the extra benefits of
reusability of data and code. Programming procedures
implemented in one object can be used in another object
through a system of classes, hierarchies and inheritance. We
need to combine data structures and processes to form a single
unified set of structures and associated processing (figure 4.4)

Generalization: defines a relationship among classes

Aggregation: “part of” hierarchies

How VB implements the hierarchy ?

Suppose that our application contains two command buttons
with distinct name Command1 and Command2. They share the
same class Command Button and the characteristics of the form
where they are located. All controls have common
characteristics that make them different from forms and other
objects in VB environment.

An object hierarchy provides the organization that
determines how objects are related to each other, and how they
can be accessed.

The objects can be grouped together in so called
collection objects that have their own properties and methods.
The objects in a collection object are referred to as members of
the collection. In VB each member of a collection is numbered
sequentially beginning at 0; this number is the member’s index
number.

9

A member of a collection can be addressed by using two general
techniques:
1st . By specifying the name of the member, for example:

CollectionName(“MemberName”)
or

CollectionName!MemberName

2nd . By using the index:

Controls(index)

or

CollectionName(“MemberIndex”)

The common collections in VB are:
Forms - contains loaded forms;
Controls - contains controls on a form;
Printers - contains the available Printer Objects.

Association
An association defines a conceptual connection between

object classes with common structure and semantics and provides a
way to depict information that is not unique to a single class but that
depends on two or more classes (figure 5.19)

Figure 5.19. Associations between objects

10

Messages

When objects have been encapsulated to insulate the
outside world from the details of the object structures and
behaviors, there needs to be a way to interact with these
structures and behaviors. Messages provide this
mechanism.

A message is composed of the name of an
operation to perform on object data and any necessary
parameters to qualify the operation (figure 4.5).

Figure 4. 5 Messages

When a client object (CLIENT) sends a message to another object
(a SERVER), the client is asking the server to perform some
operation and, perhaps, to return some information to the client.
When a receiver of a message processes that message, it performs
an operation in any way it can. The sender of message does not
(indeed, should not) know how the operation will be performed.
Because of encapsulation, the details of how an object performs an
operation are hidden from view of outsiders.

Some messages might be internal ones that are not part of
the objects public interface. An object could send a message to
itself to perform recursive operations, for instance.

11

Polymorphism
Polymorphism is the ability of two or more classes to respond

to the same message, but in different ways. Polymorphism means
that many classes can provide the same property or method, and a
caller doesn’t have to know what class an object belongs to before
calling the property or method. It allows the similarities between
different object classes to be exploited (figure 4.6)

Figure 4.6 Polymorphism
Most object_oriented programming systems provide
polymorphism through inheritance.

VB doesn’t use inheritance to provide polymorphism; the
polymorphism is provided by VB through multiple ActiveX
interfaces. An interface is a set of related properties and
methods.

VB Procedures

The methods and events are represented by various types
of procedures. The procedures are small logical
components in which you can break (split) a program for a
specific task. They are very useful for condensing
repeated or shared tasks (such as calculations frequently
used). The procedures are called to do their job from other
procedures. Generally a procedure can take arguments,
perform a series of statements, and change the value of
its arguments.

12

The general form of a VB procedure can be described as follows:

[Procedure_scope] Procedure_type Procedure_name [(Argument_list)][return_type]
[declaration_statements]
[executive_statements]

End Procedure_type

The Procedure_scope defines which parts of your code are aware of its
existence:

Procedure_scope::={PrivatePublic}[Static]
Procedure_type::=Sub Function
The argument_list declares the values that are passed in from a

calling procedure.

procedure body

A procedure can have two parts:

- a declaration part that tells the compiler which cells are
needed to hold data and program results. The declaration part
communicates to the compiler the names of all user_defined
identifiers that can appear in the program and the usage of
each identifier. It also tells the compiler what kind of
information will be stored in each memory cell.

-an executive part that contains statement (derived from the
algorithm you want to communicate to the computer) that are
translated into machine language and later on executed.

13

There are several types of procedures used in VB:

1) Sub procedures do not return a value;

2) Function procedures return a value;

3) Property procedures can return and assign values, and set
references to objects.

Sub procedures

The syntax of Sub procedure is:

[Private Public][Static] Sub procedure_name(arguments)
statements

End Sub

Each time the procedure is called the statements between
Sub and End Sub are executed. Sub procedures are by default
Public in all modules, that mean they can be called from anywhere in
the application. A procedure can modify the values of any variables
passed to it.

A Sub procedure can be a general procedure or an event procedure.
A general procedure tells the application how to perform a specific
task (ex. ButtonMgr).
An event procedure establishes an association between the object
and the code (they are said to be attached to forms and controls).

14

The naming conventions used are:

- an event procedure for a control combines the control’s actual
name (specified in the Name property), an underscore (_), and the
event name;

- an event procedure for a form combines the word “Form”, an
underscore and the event name. If the forms are MDI the event
name is prefixed with “MDIForm”.

Figure 4.7 The call process

A call to a Sub procedure is a stand_alone statement
(figure 4.7). The ways to call a Sub procedure can be realized in
two ways:

Call Procedure_name (argument_list)
or

Call Procedure_name argument_list

15

Public procedures in other modules can be called anywhere in
the project. In order to reference the procedure in another module
you must specify the module that contains it. The techniques for
doing this vary, depending on whether the procedure is located in
a form, class or standard module:
- Procedures in Forms. All calls from outside the form module
must point the form module containing the procedure:

Call Formname.Procedure_name(arguments)
- Procedures in Class Modules. Calling a procedure in a class
module requires that the call to the procedure be qualified with a
variable that points to an instance of the class:

Dim Variablename As New Classname
Variablename.Procedure_name

- Procedures in Standard Modules. If the procedure name is
unique you don’t need to include the module name in the call. A
call to a common procedure name from another module must
specify the intended module:

Module_name.Procedure_name(arguments)

Function Procedures

VB include built_in functions (like Sqr, Sum, Min, …) that can
be invoked anywhere in a project, as an assignment
statement:

Variablename=Functionname(arguments)
or

Call Functionname(arguments)
or

Functionname arguments

The user can define his own function procedures by using the statement:

[PrivatePublic][Static]Function Functionname(arguments) [As data_type]
statements (somewhere in the list of the statements must be an
assignment:Functionname=expression for the return)

End Function

16

A function procedure can return a value to the calling.
There are three differences between Sub and Function
procedures:

- generally, you call a function by including the function
procedure name and arguments on the right side of a larger
statement or expression (Variablename=Functionname());

- function procedures have data types, just as variables do. This
determines the type of return value (As type).

- you return a value by assigning it to the procedure name itself.

Property procedures

Property procedures allow you to execute code when a property
value is set or retrieved. In that way the property procedures allow
an object to protect and validate its own data.

17

Control Categories

(course)

a) Intrinsic controls

Figure 5.25. The standard toolbox in VB

WINDOWS BASICS from a Visual Basic PERSPECTIVE
5.1. Introduction
5.2. Windows basic elements
5.3. Basic Mouse Techniques
5.4. Object Oriented Programming – An Introduction
5.4.1. Assembling Systems from Objects
5.4.2. Visual Basic Projects
5.4.3. Abstraction
5.4.4. Encapsulation
5.4.5. Hierarchies and inheritance
5.4.6. Association
5.4.7. Messages
5.4.8. Polymorphism
5.4.9. VB Procedures

Sub procedures.
Function Procedures
Property procedures

5.4.10. Control Categories in VB
5.4.11. Defining Forms in VB (Windows)
5.5. Choosing and Selecting
5.6. Using a Menu
5.7. Using a dialog box
5.8. User interface architecture
5.9. User Assistance

Contents

18

Bibliography
1. [AvDg.03]Avram Vasile, Dodescu Gheorghe – Informatics:
Computer Hardware and Programming in Visual Basic, Editura
Economica, Bucuresti, 2003, chapter 5, pages 225-286

2. [AASA.02]V.Avram V, C.G.Apostol, T.Surcel, D.Avram – Birotica
Profesionala, Editura Tribuna Economica, 2002, chapter 2 pages 47-
92, chapter 3 pages 107-196

3. [SMAA] T.Surcel, R.Marsanu, V.Avram, D.Avram – Medii de
programare pentru gestiunea bazelor de date, Editura Tribuna
Economica, 2004, chapter 4, pages 213-326

