
1

Chapter 3.
The Representation of
Processing Algorithms

3.1. Algorithm definition

3.2. Steps in computer problem solving process

3.3. Steps for preparing a program for execution

3.4. Executing a program

GENERAL INFORMATICS

3.5. The Description of Algorithms

An algorithm is represented as a set of
rules (Ri) which can be applied to the
same class of problems (CPi) in order
to obtain the solution (S) by means of
some sequential unique operations
(OSi) started, eventually, with some
initial conditions (CIi) :

S=Ri(OSi(CPi([CIi]))).

Algorithm definition

2

t Algorithm is a fundamental concept of
computer programming.

t A program is a set of instructions written in a
language designed to make a
(micro)computer perform a series of specific
tasks. The instructions tell computers exactly
what to do and exactly when to do it.

t A programming language is a set of grammar
rules, characters, symbols and words – the
vocabulary – in which those instructions are
written. Programming is the designing and
writing programs.

t A computer program – does no matter if is a
single procedure or function, utility tool, an
application or the operating system itself – is
nothing else than a list of instructions that the
microprocessor (or generally processor) can
execute.

t An algorithm is a prescribed set of well-
defined instructions for solving a problem in
a finite number of steps.

3

t Any algorithm must have the following
properties:

- Generality – the algorithms must solve a
class of problems not a particular one;

- Finality – the algorithm must find a
solution in a finite number of steps;

- Clarity – the algorithm must specify all
steps that must be realized to obtain a
correct solution of the problem.

t The problem solving process starts with the
problem specification and ends with a
concrete (and correct) program.

t The steps to do in the problem solving
process may be: problem definition,
problem analysis, algorithm development,
coding, program testing and debugging, and
documentation.

Steps in problem solving process by using a programming environment

4

t The stages of analysis, design, programming,
implementation, and operation of an information
system forms the life cycle of the system.

t We briefly describe the steps in problem solving
process by using a programming environment (it
can allow the “around” application programming
by the possibility of generating programs from
general templates, for example) and by
considering only a specific process from the
whole system. In this context the stages can be:

t 1st. Defining/Specifying the problem [Theme] -
by answering to questions as:
What the computer program do?
What tasks will it perform?
What kind of data will it use, and where will get
its data from?
What will be the output of the program?
How will the program interact with the computer
user?

5

Specifying the problem requirements forces
you to state the problem clearly and
unambiguously and to gain a clear
understanding of what is required for its
solution.

Your objective is to eliminate unimportant
aspects and to focus on the root problem,
and this may not be as easy as it sound.

t 2nd. Analyzing the problem [Analysis]
involves identifying the problem (a) inputs,
that is, the data you have to work with; (b)
outputs, the desired results; and (c) any
additional requirements or constraints on
the solution.

6

t 3rd. Algorithm development: find an
algorithm for its solution [Design].

Write step-by-step procedure and then verify
that the algorithm solves the problem as
intended.

The development can be expressed as:
- pseudocode – a narrative description of the

flow and logic of the intended program, written
in plain language that expresses each step of
the algorithm;

- flowchart - a graphical representation that uses
graphic symbols and arrows to express the
algorithms.

t After you write the algorithm you must realize
step-by-step simulation of the computer execution
of the algorithm in a so called desk-check process
(verifying the algorithm).

7

t 4th. Coding (or programming): is the
process of translating the algorithm into the
syntax of a given programming language
[Programming]. You must convert each
algorithm step into one or more statements
in a programming language.

t 5th. Testing and debugging:
- testing means running the program, executing all

its instructions/functions, and testing the logic by
entering sample data to check the output;

- debugging is the process of finding and correcting
program code mistakes:
• syntax errors;
• run-time errors;
• logic errors (or so called bugs).

- field testing is realized by users that operate the
software with the purpose of locating problems.

8

t 6th. Documenting the program by:

• internal documentation;
• external documentation.

t 7th. Integrate the program in the data
process flow (Implementation) and use the
program to solve problems [Exploitation].

9

Figure 3. 1 Steps for preparing a program for execution

Steps for preparing a program for execution

Executing a Program

Figure 3. 2 Executing a program

10

The Description of Algorithms

Process, Program and Document Flowcharts

In the general analysis of an information system the designer
can use three kinds of flowcharts: document, process, and
program flowchart and/or narrative descriptions in pseudocode.

Document Flowchart - is a diagram illustrating where documents
originate and where copies of them are sent.
Process Flowchart - is a diagram that shows the data and operation
for a single process.
Program Flowchart - is a diagram that shows the data, steps, and
logic of a process operation, does show logic and additional
processing detail.
Pseudocode - is a set of succinct instructions to the programmer
using some of the syntax of the language in which the application will
be programmed.

The Description of Algorithms by means of logical diagrams
(program flowcharts)

Procedure - A call to another process or procedure. Inside is written
the name of the procedure followed by the list of parameters in the
order as specified in the call model;

Process/Calculation Block - It is used for representing calculus
formula, changes of the index values, assigning of values. Inside are
written the expressions of that operations;

Terminal/Interrupt (Start/Stop) - It marks the START and the STOP
of the logical diagram and/or the beginning and ending of a procedure
(function, subroutine). Inside is written, case usage dependent, either
the word START/STOP (for main programs) or the call model for the
procedure (function or subroutine);

The Basic Symbols Used in Drawing Program Flowcharts

11

Input/Output Block - It is used to represent read and write operations on
data. Inside is written the operation sense such as reading (expressed by
commands as: Read, Input, Accept, Select, Get, In) or writing (expressed
by commands as: Write, Display, Put, Update, Modify, Print, Out)
followed by the logical device name (allowed by the system at opening)
and the list of values/variables on which the command acts.

Preparation – used to specify Open/Close operations on files (or
computer ports, or connections to host computers or to long distance
databases);

Decision Block - It is used for the passing in different points, of the
diagram, depending on the true state or false state of a logical condition;

Flow – Is a connection from … to that links all the blocks in the diagram
and shows the transfer sense of the information.

Offpage Connector - It links different points of the logical diagram in
different pages. It has the same rules as the Onpage Connector.

1 1 2 …. N

Onpage Connector - Used to link different points of the logical diagram in
the same page. Inside is written a label (can be a digit/number or a word – is
preferable to be of significance for the reader) that must be defined only once
as entry point (the arrow goes from symbol) and how many times needed as
exits (or go to). The entry labels must be unique for a particular flowchart;

1 1 2 …. N

e
e e e

e
e e e

12

Sequential Structure

Step 1 Step 3Step 2

T

The sequential structure can be represented as a sequence
of operations:

Sequence

where T from the graphical representation is a data
transformation such as assignments and/or computations, data
type declarations, input/output operations etc.

or as a transformation block:

Sequential Structure

The assignments are represented, in the used programming
languages, in one of the next following formats:

x←0 x=0 x:=0
store 0 To x
x = expression
variable = expression

The interpretation of the last form is: the variable before the
assignment operator is assigned a value of the expression after
it, and in the process, the previous value of variable is
destroyed.

An expression can be an expression on character string, a
logical expression or arithmetic expression. It can be a variable,
a constant, a literal, or a combination of these connected by
appropriate operators.

An assignment statement stores a value or a
computational result in a variable and is used to perform most
arithmetic operation in a program.

13

Sequential Structure

1. An expression on character string can be built (in VB but
not only) using:

- the concatenation operator: & or +
- intrinsic functions for extracting substrings from a string

variable or string constant such as:
Right(string,number_of_characters) - extracting substring

from the end
Left(string,number_of_characters) - extracting substring

from the beginning
- functions that manipulate strings:

Cstr(expression) – convert the expression in a character
string;

Lcase(string_expression) – convert the string in lower
case;

Ltrim(string), Rtrim(string), Trim(string) – eliminates the
spaces (trailing) from left (leading blanks), right and, respectively
left-right;

Str(number) – converts number in string;
Ucase(string) – converts string to uppercase.

Sequential Structure
2. A logical expression can be:
• simple, with the general syntax:

<variable>[<relation_operator><variable>]
or

<variable>[<relation_operator><constant>]
<relation_operator>::=<|<=|>|>=|=|<>

• complex, with the general syntax:
<logical_expression1><logical_operator><logical_expressio

n2>
where the logical_operator can be:
And, Or as binary operators (connectives);
Not as unary operator.

The precedence of evaluation of logical operators is Not,
And, Or.

Other logical operators:
e1 Eqv e2 - equivalence;
e1 Imp e2 - logical implication;
o1 Is o2 - compare two object reference string like

pattern;
e1 Xor e2 - exclusive or;

14

Sequential Structure
3. An arithmetic expression uses the syntax:

<operand1><arithmetic_operator><operand2>
where:
- <operand1>,<operand2> can be numeric variables,

constants or arithmetic expressions (or calls to functions that
returns numeric values)

- arithmetic_operator (binary operators) is one of the
following:

3x^2→9Exponentiation^

2x mod 2→1
remainder 1

Modulusmod

2x\2→1Integral division\ or div

2x/2→1,5Divide/

24*x→12Multiply*

1x-1→2Subtract-

1x+1→4Add+

Evaluation Priority
(in descending
order)

Example
(for x=3)

SignificanceOperator

Sequential Structure

If an expression contains more than one operator and/or parentheses
the following rules of evaluation applies:
1. Parentheses rule: All expression in parentheses must be
evaluated separately. Nested parenthesized expressions must
evaluated from inside out, with the innermost expression evaluated
first.

2. Operator precedence rule. Operators in the same expression
are evaluated in the following order:

last+, -

second*, /, mod, \, div

first^

3. Left associative rule. Operators in the same expression and at
the same precedence level are evaluated left to right.

15

Sequential Structure - Variables and Constants Declarations

The naming of constants and variables in VB uses the rules:
1. An identifier must begin with a letter;
2. Can’t be longer than 255 characters;
3. Can’t contain embedded period or embedded type declaration
character;
4. Must be unique in same scope (the range from which the
variable can be referenced).

Variables: are named storage locations that can contain data that
can be modified during program execution. The variables are the
memory cells used for storing program’s input data and its
computational results. The explicit declaration of variables is
realized in VB by using the Dim statement:

Dim variable[As data_type] [,variable[As data_type]]…
where:
data_type can be one of Byte, Boolean, Integer, Long, Single,
Double, Currency, Decimal, String, Date, [user_defined], Variant,
Object as described in table 3.1;
variable is a user identifier defined by following the naming rules.

Sequential Structure - Variables and Constants Declarations

Constants: can appear as such anywhere as literals, intrinsic
constants available in the Visual Basic programming environment or
in other Windows applications, or as declarations in the declarative
part of the program.
- can be defined as a declaration by using the syntax:
Const constantName[As data_type]=expression[,…]
where:
data_type can be one of Byte, Boolean, Integer, Long, Single,
Double, Currency, Decimal, String, Date, [user_defined], Variant,
Object;
constantName is an user identifier defined by following the naming
rules;
expression an expression evaluated to an agreed data type whose
evaluation is considered the default value for the constant.

16

Sequential Structure - Input/Output operations by using Inbox and
Msgbox functions

Input/Output Operations by Using Inbox and Msgbox Functions

InputBox. Displays a prompt in a dialog box, waits for the user to
input text or click a button, and returns a string containing the
contents of the text box.
Syntax:
InputBox(prompt[,title][,default][,xpos][,ypos][,helpfile,context])

MsgBox. Displays a message in a dialog box, waits for the user to
click a button, and returns an Integer indicating which button the user
clicked.
Syntax:
MsgBox(prompt[,buttons][,title][,helpfile,context])

Decision (Alternative) Structure

False (Not)True (Yes)
condition

operation1 operation2

If condition Then
operation1

Else
operation2

End If

17

Decision (Alternative) Structure

*The logical condition <condition> is a logical expression
that will be evaluated either to True or either to False. The
logical conditions can be simple or complex logical
conditions.
A simple logical condition has the general syntax:
<variable> [<relation_operator ><variable>]
or
<variable> [<relation_operator ><constant>]

Decision (Alternative) Structure

*It is possible do not have a specific operation on the two
branches :
If condition Then statement
* Nested If
*If … Elsif …

If condition1
Then

sequence1
ElseIf condition2 Then

sequence2
.
.
.
Else
.
.
.

End If

18

Decision (Alternative) Structure
Case of. Executes one of several groups of statements
depending on the value of an expression (called selector). The
case structure (and statement) is especially used when selection
is based on the value of a single variable or a simple expression
(called the case selector).

sentences1

?

expresion_list1

test_expression∈
expression_list1

sentences 2

expresion_list 2

test_expression∈ex
pression_list 2

?

sentences n

?

expresion_list n

test_expression∈
expression_list n

test_expression [Selector]

The Case Of structure

Decision (Alternative) Structure

Select Case test_ expression
[Case expression_list1
[sentences1]]
[Case expression_list 2
[sentences 2]]
.
.
.
[Case Else
[sentences n]]

End Select

Second Syntax:
Choose(index,choice_1[,choice_2,…[,choice_n]])

The return is Null if n<index<1.

19

Cycle (Repeating) Structure

Not

Yes

condition

operations

Figure 3. 13 Loop structure

Conditional Loop With Condition Evaluated First

Syntax:
Do [{While|Until}condition] → beginning of cycle

[statements]
[Exit Do] → body of the cycle
[statements]

Loop → the end of sentence block

False
condition

operations

True

Figure 3. 15 Do … Until

Do
operations

Loop {While|Until} condition

Conditional Loop with Condition Evaluated After

Cycle (Repeating) Structure

20

The commands Loop and Exit Do are used to do:
- Loop – an unconditional jump (or branch) to the

beginning of the associated cycle (the evaluation
of the condition);

- Exit Do – an unconditional ending of the cycle (a
jump to the next sentence defined under the loop
that ends the body of the cycle).

The block of commands between Do… and Loop
will be executed while/until the conditional
expression “condition” evaluates to True.

Do…Until work as:
1) execute statements;
2) evaluate the condition Loop or Exit

Cycle (Repeating) Structure

N
ot

counter=iv

counter=fv

counter=counter +step

operations

Yes

For counter = vi To fv [Step s]
operations
[Exit For]

Next [counter]

Counter Loop

Cycle (Repeating) Structure

21

The execution of For (VB) sentence follows the
scenario:

- The value vi is assigned to the variable counter;
- The value of variable counter is compared with

the end value fv (If the value for step is
negative is checked if counter<fv);

- The operations are executed;
- The value of variable counter is incremented with

the value step (1 if step not specified);
- Repeat the steps from 2 to 5.

Cycle (Repeating) Structure

The For instructions can be nested following the model:
For i...

sentences
For j ...

sentences
...
For k ...

sentences
Next k
…

Next j
…

Next i
Each For i associated with the line containing the Next
sentence followed by the variable designated as counter.

Cycle (Repeating) Structure

22

Contents
Chapter 3 THE REPRESENTATION OF PROCESSING ALGORITHMS
3.1. Concepts
3.1.1. The Stages of Solving a Problem by Means of Computer

The General Steps for Preparing a Program
Executing a Program

3.1.2. The Description of Algoritms by Means of Logical Diagrams (Flowcharts)
Process, Program and Document Flowcharts
The Basic Symbols Used in Drawing Program Flowcharts
Fundamental Structures Used in Algorithm Representation

3.2. Sequential Structure
3.2.1. Assignments
3.2.2. Variables and Constants Declarations
3.2.3. Input/Output Operations by Using Inbox and Msgbox Functions

InputBox ; MsgBox
3.3. Alternative Structure (Decision)

If … Then ... Else ; Case of / Switch
3.4. Repeating Structure

Conditional Loop With Condition Evaluated First
Conditional Loop With Condition Evaluated After

3.5. Commented Samples

Bibliography
1.[Av.00]Avram Vasile - Sisteme de calcul si operare, volumul II,
Editura Dacia Europa Nova Lugoj, 2003

2. [AvDg.97]Avram Vasile, Dodescu Gheorghe - General
Informatics, Editura Economica, Bucuresti, 1997 (you can find
another pseudocode)

3. [AvDg.03]Avram Vasile, Dodescu Gheorghe – Informatics:
Computer Hardware and Programming in Visual Basic, Editura
Economica, Bucuresti, 2003, chapter 3, pages 83-126; chapter 4,
pages 177-222

4. [AASA.02]V.Avram V, C.G.Apostol, T.Surcel, D.Avram – Birotica
Profesionala, Editura Tribuna Economica, 2002, chapter 3, 103-189

5. [SMAA] T.Surcel, R.Marsanu, V.Avram, D.Avram – Medii de
programare pentru gestiunea bazelor de date, Editura Tribuna
Economica, 2004, chapter 4, pages 213-326

