
ACADEMIA DE STUDII ECONOMICE - Bucureşti
Academy Of Economic Studies - Bucharest

FACULTY OF BUSINESS ADMINISTRATION

(Facultatea de Administrare a Afacerilor cu predare în limbi străine)

Internet Technologies for Business

-

VBScript

By: Professor Vasile AVRAM, PhD
- suport de curs destinat studenţilor de la sectia engleză -

(course notes for 1st year students of English division)
- anul I - Zi -

Bucureşti 2006

Prof. Univ. Dr. Vasile AVRAM

BUSINESS CATEGORIES AND MODELS IN Internet 2

COPYRIGHT© 2006-2009

All rights reserved to the author Vasile AVRAM.

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 3

VBScript

CONTENTS

Chapter 6 VBScript ... 4

6.1 Using and placing VBScripts in a HTML page ... 4
6.1.1 VBScript in the body of the HTML file .. 4
6.1.2 VBScript in heading .. 5

6.2 Variables... 5
6.3 Assignments and expressions... 8

Assignments ... 8
Expressions... 8

6.4 Procedures and functions ... 10
6.5 Decisional (conditional/alternative) statements ... 12

If … Then … Else .. 12
If … Then ... 12
If … Then … Elseif.. 13
Case of.. 13

6.6 Repeating Structure .. 14
Conditional Loop With Condition Evaluated First .. 14
Conditional Loop with Condition Evaluated After .. 15
Counted Loop... 15
For Each ... Next... 18

Annex 1. List of VBScript intrinsic functions.. 19
References .. 22

BUSINESS CATEGORIES AND MODELS IN Internet 4

Chapter 6 VBScript

VBScript is a subset of VBA and it allows usage of most familiar functions of these
one but there are some important differences:

- provides no support for classes as used in Visual Basic;
- control arrays not allowed;
- do not support data access using JET or RDO. The data access is allowed for back-end

purposes by using Internet Service API (ISAPI) provided with Internet Information
Server (IIS);

- provides no debugging features (you can use MsgBox function to show important
information for you; when finishing the job these can be transformed in comments);

- do not support file operations found in Visual Basic;
- does not allow access to the Windows Help file system;
- does not support VB intrinsic constants (such as vbOKOnly, vbCancel etc);
- there is no concept of Multiple Document Interface (MDI) in VBScript;
- do not support the Screen, Printer, App, Debug and Clipboard objects. It support only

the Err object.
Microsoft says that VBScript is integrated with World Wide Web browsers (more exactly
with Internet Explorer versions of Microsoft) and designed to work with ActiveX controls and
other objects embedded in active HTML documents.
The code modules are supported through the <SCRIPT></SCRIPT> tag. Each script section
forms an independent code module that may have its own variables, functions and subroutines
(they are similarly to the standard .bas modules found in Visual Basic).
The forms are created using the <FORM></FORM> tag and they are not visible as separate
windows in the application. The forms are ways to group controls together for the purpose of
addressing their properties and methods in code or to submit data to back-end process.

6.1 Using and placing VBScripts in a HTML page

In the following paragraphs are introduced some examples of using (and placing)
VBScripts in a HTML page.

6.1.1 VBScript in the body of the HTML file

VBScript in the body of the HTML page will be executed when the page loads. Generally,
the scripts in the body, will generate the content of the page.
Example:

<html>
 <head>
 <title>
 Page containing VBScript
 </title>
 </head>
 <body>
 <script type="text/vbscript">
 document.write("This text is displayed by a VBScript!")

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 5

 </script>
 </body>
</html>

Comments:
The tag <script> have the attribute „type”, that specifies the script type (VBScript in

our case). This script composed by a single command that displays inside the page the
text: "This text is displayed by a VBScript!".

If the script is included in a comment tag (<!--) then the browsers that do not „know”
(interpret) VBScript will not display in the page the script text (script source), as shown in
the folowing sample:

<!--
document.write("<i>"+"This text is displayed by a VBScript!"+"<\/i>")
//-->

The browsers that know VBScript will process the script, even this included in a

comment line.
The string „//”, comment in VBScript, tell to the browser do not process the line „-->”.

We can not use the sintax „//<!--”, because a browser that do not interpret VBScript will
display that string „//”.

6.1.2 VBScript in heading

If we want be shure that the script executes before displaying any element in the page
we can include this in the heading part of the HTML page (file). The VBScript in the head
section will be executed when called, or when an event is triggered.
Example:

<html>
 <head>
 <title>
 Page with VBScript
 </title>
 <script type="text/vbscript">
 document.write("This text is displayed by a VBScript!")
 </script>
 </head>
 <body>
 <P> This text must appear in the page after the execution of the VBScript.
 </body>
</html>

The number of scripts placed in the head section and in the body of a HTML page is

unlimited.

6.2 Variables

Variables: are named storage locations that can contain data that can be modified
during script is running. The variables are the memory cells used for storing forms input data
and/or its computational results. The only datatype accepted is Variant which can contain any
kind of data. Table 6.1 shows the data subtypes accepted. The declaration of variables is
realized by using the Dim or ReDim statement.

The naming of variables in VBScript uses the rules:
1. An identifier must begin with a letter;
2. Can’t be longer than 255 characters;

BUSINESS CATEGORIES AND MODELS IN Internet 6

3. Can’t contain embedded period or embedded type declaration character;
4. Must be unique in same scope (the range from which the variable can be referenced).

The number of variables per procedure is limited to 127 (an array counts as one
variable) and each script is limited do not have more than 127 module-level variables. The
length of the time a variable exists is its lifetime. A script level variable’s lifetime begins
when its declaration statement is encountered as procedure begins, and ends when the
procedure concludes.

The array elements can have how many dimensions required, each dimension defined
by separating from previous with a comma, as in this example Dim MatrixAlpha(10,20,30)
that defines a three dimensional array. The addresses of elements (the index) start from 0 for
every dimension. In the previous example the number of elements of the array called
MatrixAlpha is 11x21x31.

The user can define his constants by following the procedure:
1) define the memory variable for constant;
2) assign the value, as literal value, to the variable;
3) use the name of the variable anywhere (in his scope) is required the literal value

assigned to it.
Examples:

Dim Pi,CompanyName,EndDate
rem Assigning values
Pi=3.14
CompanyName=”Media Advertising, Inc.”
EndDate=#12-31-2007#

Table 6.1. Possible Data Subtypes for a Variant

Subtype Meaning

Empty Variant is un-initialized. Value is either 0 for numeric variables or a zero-length
string ("") for string variables.

Null Variant intentionally contains no valid data.

Boolean Contains either True or False.

Byte Contains an integer in the range 0 to 255.

Integer Contains an integer in the range -32,768 to 32,767.

Single Contains an integer in the range -2,147,483,648 to 2,147,483,647.

Long Contains a single-precision, floating-point number in the range -3.402823E38 to -
1.401298E-45 for negative values; 1.401298E-45 to 3.402823E38 for positive
values.

Double Contains a double-precision, floating-point number in the range -
1.79769313486232E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for positive values.

String Contains a variable-length string that can be up to approximately 2 billion
characters in length.

Date (Time) Contains a number that represents a date between January 1, 100 to December
31, 9999.

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 7

Object Contains an object.

Error Contains an error number.

Example:
<SCRIPT TYPE="text/vbscript">
<!--
rem Defines two variant variables
Dim DegreesFahrenheit, DegreesCelsius
Rem Defines an array A of 100 elements and an array B of an unspecified dimension (used for
dynamic resizing)
Dim A(100), B()
Rem Dynamically resizes the array B
ReDim B(50)
-->
</SCRIPT>

Example:
This example shows how you can
reference and use variables defined in
forms (as text box objects) and assign
a value. The procedure cleans the text
boxes in the form when the web page
containing the form is loaded.

<HTML>
<BODY bgColor=white>
<TABLE>
<TR>
<TD valign=top> </TD>
<TD valign=top>
<TABLE> <tr> <td colspan=2></td> </tr>
<TR> <TD>Name :</TD><TD><INPUT id=text1 name=text1
 style="WIDTH: 248px; HEIGHT: 22px" size=32></TD>
</TR>
<TR>
 <TD>Address :</TD><TD><INPUT id=text2 name=text2
 style="WIDTH: 248px; HEIGHT: 22px" size=32></TD>
</TR>
<TR>
 <TD>County (*):</TD><TD><INPUT id=text3 name=text3
 style="WIDTH: 43px; HEIGHT: 22px"></TD>
</TR>
<TR>
 <TD>Postal Code (*):</TD><TD><INPUT id=text4 name=text4 width =
 "10"></TD>
</TR>
<TR>
 <TD colSpan=2><FONT
 style="BACKGROUND-COLOR: red"><FONT
 style="BACKGROUND-COLOR: #ffffff" color=crimson size=2><FONT
 style="BACKGROUND-COLOR: white">*These fields are
 required </TD>
</TR>
<TR>
 <TD colSpan=2><INPUT id=button1 name=button1 type=button value=" Send Data "
 LANGUAGE=javascript onclick="return button1_onclick()"></TD>

BUSINESS CATEGORIES AND MODELS IN Internet 8

</TR>
</TABLE>
</TD>
</TR>
</TABLE>
</BODY>
<SCRIPT LANGUAGE=VBScript>
rem When the page is loaded, clear the text boxes
sub Window_onLoad
 rem Reset edit boxes
 text1.value = ""
 text2.value = ""
 text3.value = ""
 text4.value = ""
end sub

</SCRIPT>
<SCRIPT LANGUAGE=JScript>
</SCRIPT>

</HTML>

6.3 Assignments and expressions

Assignments

The general syntax for assignment is:

variable = expression

The interpretation of this is: the variable before the assignment operator is assigned a

value of the expression after it, and in the process, the previous value of variable is destroyed.
 An assignment statement stores a literal value or a computational result in a variable
and is used to perform most arithmetic operation in a program.

Expressions

An expression can be an expression on character string, a logical expression or

arithmetic expression. It can be a variable, a constant, a literal, or a combination of these
connected by appropriate operators (table #.2).

1. An expression on character string can be built (in VB but not only) using:
- the concatenation operator: &
- intrinsic functions for extracting substrings from a string variable or string constant

such as:
 Right(string,number_of_characters) - extracting substring from the end
 Left(string,number_of_characters) - extracting substring from the beginning

- functions that manipulate strings:
 Cstr(expression) – convert the expression in a character string;
 Lcase(string_expression) – convert the string in lower case;
 Ltrim(string), Rtrim(string), Trim(string) – eliminates the spaces (trailing)
from left (leading blanks), right and, respectively left-right;
 Str(number) – converts number in string;

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 9

 Ucase(string) – converts string to uppercase.

2. A logical expression can be:
 • simple, with the general syntax:
 <variable>[<relation_operator><variable>]
 or
 <variable>[<relation_operator><constant>]
 <relation_operator>::=<|<=|>|>=|=|<>
 • complex, with the general syntax:
 e1 Eqv e2 - equivalence;
 e1 Imp e2 - logical implication;
 e1 Xor e2 - exclusive or;
 <logical_expression1><logical_operator><logical_expression2>
 where the logical_operator can be:
 And, Or as binary operators (connectives); Not as unary operator.
The precedence of evaluation of logical operators is Not, And, Or, Xor, Eqv, Imp (table #.2).
 The logical functions works as explained in chapter two in the book “Informatics:
Computer Hardware and Programming in Visual Basic” [AvDg03]. Each one has an
associated truth table that take carry of the two states True or False and, in some programming
environments, a state called Empty (or Null) to distinguish between False an non value.

3. An arithmetic expression uses the syntax:
 <operand1><arithmetic_operator><operand2>
where:
- <operand1>,<operand2> can be numeric variables, constants or arithmetic expressions (or
calls to functions that returns numeric values)
- arithmetic_operator (binary operators) is one of those shown in table 6.2, column
Arithmetic.

Table 6.2. VBScript Operators

Arithmetic Comparison Logical

Description Symbol Description Symbol Description Symbol

Exponentiation ^ Equality = Negation Not

Unary negation - Inequality <> Conjunction And

Multiplication * Less than < Disjunction Or

Division / Greater than > Exclusion Xor

Integer division \ Less than or equal
to

<= Equivalence Eqv

Modulo arithmetic Mod Greater than or
equal to

>= Implication Imp

Addition + Object equivalence Is

Subtraction -

String
concatenation

&

BUSINESS CATEGORIES AND MODELS IN Internet 10

Constants: can appear as such anywhere as literals, intrinsic constants available in VBscript,
or as declarations in the declarative part of the script.

Examples:

Constant Type
"Welcome to the information century !"
$25,000.00
3.14
-123
0.123e+3
“11/12/2002”

string
currency
positive real number
negative integer number
number written in the scientific notation
date

- can be defined as a declaration by using the syntax:
Const constantName=expression[,…]

where:
- constantName is an user identifier defined by following the naming rules;
- expression an expression evaluated to an agreed data type whose evaluation is

considered the default value for the constant.
Examples:

 Const Pi = 3.14159
 Const Vat = 0.19, Star = “ ”

Const CutOffDate=#06-30-2007#
A declared constant is a named storage location that contains data that can not be

modified during the script execution. The most used constants are number constants and
string constants. A string constant is sequences from 0 to 1024 characters enclosed in quotes.

6.4 Procedures and functions

The procedures are small logical components in which you can break (split) a program
for a specific task. They are very useful for condensing repeated or shared tasks (such as
calculations frequently used). The procedures are called to do their job from other procedures.
Generally a procedure can take arguments, perform a series of statements, and change the
value of its arguments.

 The major benefits of programming with procedures are:
- procedures allow you to break your programs into discrete logical units, each of each you
can debug more easily than an entire program without procedures;
- procedures used in one program can act as building blocks for other programs, usually with
little or no modification.
 The general form of a VBScript procedure/function can be described as follows:

 Procedure_type Procedure_name ([Argument_list]) the procedure heading
 [declaration_statements]
 [executive_statements]

procedure body

End Procedure_type

The Procedure_type defines if function or procedure:
 Procedure_type::=Sub ⎜Function
The user identifier Procedure_name is declared to be the name of a procedure or function.

The argument_list declares the values that are passed in from a calling procedure.

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 11

 A procedure can have two parts:

− a declaration part that contains reservations of memory cells that are needed to
hold data and program results and what kind of information will be stored in each
memory cell.

− an executive part that contains statement (derived from the algorithm you want to
communicate to the computer) that are translated into machine language and later
on executed.

Any identifier declared in the declaration part is by default usable only during the

execution of the procedure and can be referenced only within the procedure.
The procedure executive_statements describes the data manipulation performed when the
procedure is activated through a procedure call statement. The procedure call statement
initiates the execution of a procedure.

After procedure_name has finished executing, the program statement that follows the
procedure call will be executed. The information passed between a procedure and the program
unit calls it are called procedure parameters.
 The values passed into a procedure by the calling program are called procedure inputs.
The results returned to the calling program are called procedure outputs.

 There are two types of procedures used in VBScript:
1) Sub procedures do not return a value;
2) Function procedures return a value; you return a value by assigning it to the procedure
name itself: Function_name=expression for the return.

 A call to a Sub procedure is a stand_alone statement. A Sub procedure can be invoked
by a Call statement:

Call Procedure_name (argument_list) – if specified the argument list must be enclosed in
parenthesis;
or
Procedure_name argument_list

 A function procedure can return a value to the caller. A call to a function procedure
can be realized using the syntax:
Variable_name=Function_name(arguments) or Call Function_name(arguments) or
Function_name arguments

There are two differences between Sub and Function procedures:
− generally, you call a function by including the function procedure name and

arguments on the right side of a larger statement or expression
(Variablename=Functionname());

− the result value is returned to the caller by intermediate of an assignment statement
to the name of the function.

When we call functions or procedures without arguments we must include an empty set
of parenthesis () after the procedure/function name if the function is in the right part of an
assignment or in an expression; if the call is a stand-alone sentence the parenthesis not
required (and not allowed!).

BUSINESS CATEGORIES AND MODELS IN Internet 12

6.5 Decisional (conditional/alternative) statements

The decision structure is used for choosing an alternative (an operation or block of
operations) from two possible alternatives. Algorithm steps that select from a choice of
actions are called decision steps.

If … Then … Else. The first syntax for alternative structure can be expressed as:

If condition Then
operation1

Else
operation2

End If
 The decision block can be expressed in a natural language as:
- evaluate the expression that defines the logical condition <condition>;
- If the result of evaluation is True

Then execute operation1
Else execute operation2;

- continue the execution with the next step in the flow.
If the condition is True Then the group between Then and Else will be executed Else

the group of sentences between Else and End If will be executed.
 The logical condition <condition> is a logical expression that will be evaluated either
to True or either to False. The logical conditions can be simple or complex logical conditions.

A simple logical condition has the general syntax:
<variable> [<relation_operator ><variable>]
or
<variable> [<relation_operator ><constant>]
The relation_operator can be one of:
Relation Operator Interpretation

< Less than. Example: delta < 0
<= Less than or equal. Example: delta <= 0
> Greater than. Example: delta > 0

>= Greater than or equal. Example: delta >= 0
= Equal to. Example: a = 0

<> Not equal. Example: a<>0
If <variable> is number or Boolean then is possible to directly compare with 0,

respectively True and is not necessary to write the equal relation operator.
The simple logical conditions will be connected by the AND, OR, and NOT logical

operators to form complex conditions. The logical operators are evaluated in the order NOT,
AND, and OR. The change of the natural order of evaluation can be done by using parenthesis
in the same way for arithmetic expressions. The precedence of operator evaluation in Boolean
expressions (logical expressions) is:

Not
^,*, /, div, mod, and
+, -, or
<, <=, =, <>, >=, >

If … Then. It is possible do not have a specific operation on the two branches, that means
situations as expressed in one of the syntaxes:
a) conditionally executing only one statement:

If condition Then statement
Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 13

If the condition is True then the statement is executed

b) conditionally executing a set of sentences:

If condition Then
 Sequence of statements1

End If
If the condition is true then the set of sentences placed between If and End If are
executed.

VBScript allows nesting if ... then ... else sentences (one if statement inside another)

to form complex decision structures (decisions with multiple alternatives).

If … Then … Elseif. The nested If can be coded as a multiple-alternative decision. The
syntax for that nested If is:

 If condition1
 Then
 sequence1
 ElseIf condition2 Then

 sequence2 . . .
 Else . . .
 End If

For the first time condition1 is tested. If the result is False condition2 and so on until a

True evaluated condition reached for each the associated sentence block executed. After
executing the reached block the control of processing is passed to the next sentence after End
if. If no condition evaluates to True then the sentence block associated to the Else branch
executes (if Else defined; if not nothing executes).

Case of. Executes one of several groups of statements depending on the value of an
expression (called selector). The case structure (and statement) can is especially used when
selection is based on the value of a single variable or a simple expression (called the case
selector).
Select Case test_ expression

[Case expression_list1
[sentences1]]

[Case expression_list 2
[sentences 2]] . . .

[Case Else
[sentences n]]

End Select

- each expression_listi is represented (or formed) by one or many comma separated values
(value list);
- in the block Select Case the case Else can appear only once and only as a last case;
- if many cases fit to test_ expression then the first founded will be executed;
- each sentence block (sentencesi) can include zero, one or many sentences;

BUSINESS CATEGORIES AND MODELS IN Internet 14

- the evaluation of the test expression is realized only once at the beginning of the Select Case
structure.

6.6 Repeating Structure

The repeating structure repeats a block of statements while a condition is True or Until
a condition becomes True. The repetition of steps in a program is called a loop. The
executions of such blocks follow the scenario (while): the condition is evaluated and if the
condition evaluates to:

• True then executes the block of statements;
• False then end the execution of the cycle (Loop) and continue the execution of the
program.
If for the first time the condition is False the sentence block is simply skipped.

Conditional Loop With Condition Evaluated First

Syntax:
 Do [{While|Until}condition] → beginning of cycle
 [statements]
 [Exit Do] → body of the cycle
 [statements]
 Loop → the end of sentence block
 The commands Loop and Exit Do are used to do:
- Loop – an unconditional jump (or branch) to the beginning of the associated cycle (the
evaluation of the condition);
- Exit Do – an unconditional ending of the cycle (a jump to the next sentence defined under
the loop that ends the body of the cycle).
Do…Until work as:
 1) execute statements;
 2) evaluate the condition Loop or Exit
 The block of commands between Do… and Loop will be executed while/until the
conditional expression “condition” evaluates to True.

Example:
In this example we suppose that the user types numbers containing digits between 0 (zero)
and 9(nine) as integer values. Because the function InputBox() reads text values the mistakes
(any other characters than digits and/or spaces between digits) will produces a computation
error message. To avoid that is necessary to test whether the typed value is number or not.

<html>
<head>
<title>A function definition</title>
<script language=vbscript>
<!--
' Read_Number reads a value from keyboard and verifies
' if number or not (a process called validation). If the value is not a number
' signals that to the user who can choose between cancel or resume the operation from typing
Function Read_Number(xNr, denNr)
 Dim Answer
 Do While True = True ' an infinite cycle
 xNr = InputBox("Type the value for " & denNr & ":", "Example")
 If (IsNumeric(Trim(xNr)))= False Then

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 15

 Answer = MsgBox("The Value for " & denNr & " must be Numerical !")
 If Answer = 2 Then ' Cancel Button pressed
 Read_Number = "*Cancel" ' The returned value to the caller is *Cancel
 Exit Do ' Exit from the infinite cycle and return to the caller
 End If
 Else
 Read_Number = Trim(xNr) ' The returned value will be the number
 ' without extra spaces (to the left or right)
 Exit Do ' Exit from the infinite cycle and return to the caller
 End If
 Loop ' Restart the cycle
End Function
-->
</script>
</head>
<body>
<script language=vbscript>
<!--
dim numarcitit
document.write("Varsta:" & read_number(numarcitit,"Varsta "))
-->
</script>
</body>
</html>

Conditional Loop with Condition Evaluated After

 In this case the operation is executed first and then the condition is evaluated:

Do
operations

Loop {While|Until} condition
 It can be described as:

- the operations are executed;
- the condition is evaluated;
- if the result of the evaluation of the condition is False then loop to execute again the
operations;
- if the evaluation of the condition is True then continue the execution of the program
(and close the loop).

Counted Loop. The statement executes a set of statements (operation1) within a loop a
specified number of times. A variable is used as counter to specify how many times the
statements inside the loop are executed.

Syntax:

For counter = iv To fv [Step s]
operations
[Exit For]

Next [counter]

Where:
- iv – is the initial value (start value – usually 0 or 1);
- fv – is the end value (the expected value – usually how many times);
- step – is the increasing (or decreasing) step for counter; if a value for Step not specified the
default is used (+1);

BUSINESS CATEGORIES AND MODELS IN Internet 16

- the value for s can be positive or negative:
• if s is positive then must have the inequality iv<fv (otherwise the cycle never

executes);
• if s is negative then must have the inequality iv>=fv (otherwise the cycle never

executes);
- the cycle can be stopped unconditionally by intermediate of the sentence Exit For

The execution of For (VB) sentence follows the scenario:
1. The value iv is assigned to the variable counter;
2. The value of variable counter is compared with the end value fv (If the value for

step is negative is checked if counter<fv);
3. The operations are executed;
4. The value of variable counter is incremented with the value step (1 if step not

specified);
5. Repeat the steps from 2 to 5.

The interpretation of the elements of For…Next sentence is:
what cycle number is how many times

For counter=start_value To end_value [Step increment_decrement]
 [statements]
 [Exit For] stop the cycle
 [statements]
 Next [counter]

Example:

We want to list a Fahrenheit to Celsius correspondence table based on the computation
formula:

CELSIUSo = (5/9)*(FAHRENHEITo - 32)

 The correspondence table will be displayed (figure #.1) starting with the minimal value
(min) 0 (zero) and ending with the maximal value (max) of 300 degrees and the computation
and display will be done from 20 to 20 degrees (pas). We use, to solve this problem, assignments
instructions, the function MsgBox to display the result and an instruction For that allow us to
repeat the execution of a group of sentences until a specified condition satisfied.

The script looks as:

<html>
<head>
<title>Fahrenheit-Celsius</title>
<script language=vbscript>
<!--
 Sub Coresp_Temp()
 Dim min, max, pas, fahrenheit, celsius, tabel
 ' Computation of the correspondence Co- Fo
 min = 0 ' Starting Value
 max = 300 ' Ending Value
 pas = 20 ' From 20 to 20 degrees
 fahrenheit=0
 celsius=0

Prof. Univ. Dr. Vasile AVRAM

Figure #.1 The output as a
message box

INFORMATICS: Internet Technologies for Business 17

 tabel=""
 tabel = "Fahrenheit | Celsius " & Chr(13) & Chr(10) &_
 string(36, "-") & Chr(13) & Chr(10)
 For fahrenheit = min To max Step pas
 celsius = (5/9)*(fahrenheit-32)
 tabel = tabel & Right(Space(12) & round(fahrenheit,2),12) & " " _
 & Right(Space(12) & round(celsius,2),12) & Chr(13) & Chr(10)
 Next
 MsgBox(tabel)
 End Sub
-->
</script>
</head>
<body>
<script language=vbscript>
<!--
 Call Coresp_Temp
-->
</script>
</body>
</html>

In the next version the script will display the output to a page that will be displayed by the
browser.

<html>
<head>
<title>Fahrenheit-Celsius</title>
<script language=vbscript>
<!--
 Sub Coresp_Temp()
 Dim min, max, pas, fahrenheit, celsius
 ' Computation of the correspondence Co- Fo
 min = 0 ' Starting Value
 max = 300 ' Ending Value
 pas = 20 ' From 20 to 20 degrees
 fahrenheit=0
 celsius=0
tabs=" &n
bsp; "
 document.write("Fahrenheit | Celsius " & "
")
 document.write(string(36, "-") & "
")
 For fahrenheit = min To max Step pas
 celsius = (5/9)*(fahrenheit-32)
 document.write(Right(Space(12) & round(fahrenheit,2),12) & tabs _
 & Right(Space(12) & round(celsius,2),12) & "
")
 Next
 End Sub
-->
</script>
</head>
<body>
<script language=vbscript>
<!--
 Call Coresp_Temp
-->
</script>
</body>
</html>

BUSINESS CATEGORIES AND MODELS IN Internet 18

For Each ... Next. This sentence allows to apply a set of sentences to an object collection
or to a multitude (arrays, vectors, multidimensional massive) without specifying the number
of cycles (that specification is difficult if the dynamic memory reservation used).

The syntax of that sentence is:
For Each element In group

Sentences
Next element

Example:

<head>
<title>Using For Each sentence</title>
</head>
<html>
<body>
<script language=vbscript>
<!—
dim divisions(2), i, indent
divisions(0)="English"
divisions(1)="French"
divisions(2)="German"
i=1
indent=" "
document.write("The faculty sections are:
")
For Each x in divisions
 document.write(indent & indent & i & ") " & x & "
")
 i=i+1
Next
-->
</script>
</body>
</html>

the code placed in the body of the HTML page will produces the output:
The faculty sections are:
 1) English
 2) French
 3) German

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 19

Annex 1. List of VBScript intrinsic functions

Date/Time Functions
Function Description
CDate Converts a valid date and time expression to the variant of subtype Date
Date Returns the current system date
DateAdd Returns a date to which a specified time interval has been added
DateDiff Returns the number of intervals between two dates
DatePart Returns the specified part of a given date
DateSerial Returns the date for a specified year, month, and day
DateValue Returns a date
Day Returns a number that represents the day of the month (between 1 and 31,

inclusive)
FormatDateTime Returns an expression formatted as a date or time
Hour Returns a number that represents the hour of the day (between 0 and 23,

inclusive)
IsDate Returns a Boolean value that indicates if the evaluated expression can be

converted to a date
Minute Returns a number that represents the minute of the hour (between 0 and 59,

inclusive)
Month Returns a number that represents the month of the year (between 1 and 12,

inclusive)
MonthName Returns the name of a specified month
Now Returns the current system date and time
Second Returns a number that represents the second of the minute (between 0 and 59,

inclusive)
Time Returns the current system time
Timer Returns the number of seconds since 12:00 AM
TimeSerial Returns the time for a specific hour, minute, and second
TimeValue Returns a time
Weekday Returns a number that represents the day of the week (between 1 and 7,

inclusive)
WeekdayName Returns the weekday name of a specified day of the week
Year Returns a number that represents the year
Conversion Functions
Function Description
Asc Converts the first letter in a string to ANSI code
CBool Converts an expression to a variant of subtype Boolean
CByte Converts an expression to a variant of subtype Byte
CCur Converts an expression to a variant of subtype Currency
CDate Converts a valid date and time expression to the variant of subtype Date
CDbl Converts an expression to a variant of subtype Double
Chr Converts the specified ANSI code to a character
CInt Converts an expression to a variant of subtype Integer
CLng Converts an expression to a variant of subtype Long
CSng Converts an expression to a variant of subtype Single
CStr Converts an expression to a variant of subtype String
Hex Returns the hexadecimal value of a specified number
Oct Returns the octal value of a specified number
Format Functions

BUSINESS CATEGORIES AND MODELS IN Internet 20

Function Description
FormatCurrency Returns an expression formatted as a currency value
FormatDateTime Returns an expression formatted as a date or time
FormatNumber Returns an expression formatted as a number
FormatPercent Returns an expression formatted as a percentage
Math Functions
Function Description
Abs Returns the absolute value of a specified number
Atn Returns the arctangent of a specified number
Cos Returns the cosine of a specified number (angle)
Exp Returns e raised to a power
Hex Returns the hexadecimal value of a specified number
Int Returns the integer part of a specified number
Fix Returns the integer part of a specified number
Log Returns the natural logarithm of a specified number
Oct Returns the octal value of a specified number
Rnd Returns a random number less than 1 but greater or equal to 0
Sgn Returns an integer that indicates the sign of a specified number
Sin Returns the sine of a specified number (angle)
Sqr Returns the square root of a specified number
Tan Returns the tangent of a specified number (angle)
Array Functions
Function Description
Array Returns a variant containing an array
Filter Returns a zero-based array that contains a subset of a string array based on a

filter criteria
IsArray Returns a Boolean value that indicates whether a specified variable is an array
Join Returns a string that consists of a number of substrings in an array
LBound Returns the smallest subscript for the indicated dimension of an array
Split Returns a zero-based, one-dimensional array that contains a specified number of

substrings
UBound Returns the largest subscript for the indicated dimension of an array
String Functions
Function Description
InStr Returns the position of the first occurrence of one string within another. The

search begins at the first character of the string
InStrRev Returns the position of the first occurrence of one string within another. The

search begins at the last character of the string
LCase Converts a specified string to lowercase
Left Returns a specified number of characters from the left side of a string
Len Returns the number of characters in a string
LTrim Removes spaces on the left side of a string
RTrim Removes spaces on the right side of a string
Trim Removes spaces on both the left and the right side of a string
Mid Returns a specified number of characters from a string
Replace Replaces a specified part of a string with another string a specified number of

times
Right Returns a specified number of characters from the right side of a string
Space Returns a string that consists of a specified number of spaces

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 21

StrComp Compares two strings and returns a value that represents the result of the
comparison

String Returns a string that contains a repeating character of a specified length
StrReverse Reverses a string
UCase Converts a specified string to uppercase
Other Functions
Function Description
CreateObject Creates an object of a specified type
Eval Evaluates an expression and returns the result
GetLocale Returns the current locale ID
GetObject Returns a reference to an automation object from a file
GetRef Allows you to connect a VBScript procedure to a DHTML event on your

pages
InputBox Displays a dialog box, where the user can write some input and/or click

on a button, and returns the contents
IsEmpty Returns a Boolean value that indicates whether a specified variable

has been initialized or not
IsNull Returns a Boolean value that indicates whether a specified expression

contains no valid data (Null)
IsNumeric Returns a Boolean value that indicates whether a specified expression

can be evaluated as a number
IsObject Returns a Boolean value that indicates whether the specified

expression is an automation object
LoadPicture Returns a picture object. Available only on 32-bit platforms
MsgBox Displays a message box, waits for the user to click a button, and

returns a value that indicates which button the user clicked
RGB Returns a number that represents an RGB color value
Round Rounds a number
ScriptEngine Returns the scripting language in use
ScriptEngineBuildVersion Returns the build version number of the scripting engine in use
ScriptEngineMajorVersion Returns the major version number of the scripting engine in use
ScriptEngineMinorVersion Returns the minor version number of the scripting engine in use
SetLocale Sets the locale ID and returns the previous locale ID
TypeName Returns the subtype of a specified variable
VarType Returns a value that indicates the subtype of a specified variable

BUSINESS CATEGORIES AND MODELS IN Internet 22

References

1. [AvDg03] Vasile Avram, Gheorghe
Dodescu

Informatics: Computer Hardware and
Programming in Visual Basic, Ed. Economică,
Bucureşti, 2003 (Chp. 1.6, 1.7, 1.8, 7.11.3 and
7.11.4)

2. [DgAv05] Gheorghe Dodescu, Vasile
Avram

Informatics: Operating Systems and Application
Software, Ed. Economică, Bucureşti, 2005 (Chp.
10.1, 10.2 and 10.3)

3. [BIS-TDM] Dave Chaffey, Paul Bocij,
Andrew Greasley, Simon
Hickie

Business Information Systems-Technology,
Development and Management for the e-
business, Prentice Hall, London, second edition,
2003

4. [BF01] Benjamin Faraggi Architectures marcandes et portails B to B, Ed.
DUNOD, Paris, 2001

5. [RFC 1630] T. Berners-Lee RFC 1630 - Universal Resource Identifiers in
WWW, Network Working Group, CERN, June
1994

6. [RFC3986] T. Berners-Lee W3C/MIT,
R. Fielding Day Software,
L. Masinter Adobe Systems

Uniform Resource Identifier (URI): Generic
Syntax, January 2005

7. [KLJL] Kenneth C. Laudon, Jane P.
Laudon

Essentials of Management Information
Systems – Managing the Digital Firm, Prentice
Hall, fifth edition, 2003

8. [W3C] www.w3c.org World Wide Web Consortium, Web standards
collection

9. [MNSS] Todd Miller, Matthew L.
Nelson, Stella Ying Shen
and Michael J. Shaw

e-Business Management Models: A Services
Perspective and Case Studies, Revere Group

10. [MSDN] Microsoft Press Microsoft Developper Network
10. E-commerce business models http://www.iusmentis.com

http://www.iusmentis.com/business/ecommerce/businessmodels/
11. http://digitalenterprise.org/models/models.html Professor Michael Rappa, North Carolina

State University

Prof. Univ. Dr. Vasile AVRAM

http://www.iusmentis.com/
http://digitalenterprise.org/models/models.html

	Chapter 6 VBScript
	6.1 Using and placing VBScripts in a HTML page
	6.1.1 VBScript in the body of the HTML file
	6.1.2 VBScript in heading

	6.2 Variables
	6.3 Assignments and expressions
	Assignments
	Expressions

	6.4 Procedures and functions
	6.5 Decisional (conditional/alternative) statements
	6.6 Repeating Structure
	 Annex 1. List of VBScript intrinsic functions
	 References

