
ACADEMIA DE STUDII ECONOMICE - Bucureşti
Academy Of Economic Studies - Bucharest

FACULTY OF BUSINESS ADMINISTRATION

(Facultatea de Administrare a Afacerilor cu predare în limbi străine)

Internet Technologies for Business

-

JavaScripts

By: Professor Vasile AVRAM, PhD
- suport de curs destinat studenţilor de la sectia engleză -

(course notes for 1st year students of English division)
- anul I - Zi -

Bucureşti 2007

JavaScript 2

COPYRIGHT© 2006-2009

All rights reserved to the author Vasile AVRAM.

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 3

JavaScript

CONTENTS

Chapter 5 JavaScript.. 4

5.1 JavaScript – An introduction.. 4
5.2 Using and placing JavaScripts in a HTML page.. 8

5.2.1 JavaScript in the body of the HTML file .. 8
5.2.2 JavaScript in heading .. 9
5.2.3 External JavaScripts .. 10

5.3 Defining and using variables... 10
5.4 Methods.. 11
5.5 Document Object Model (DOM) ... 13
5.6 Using and Defining Function ... 14
5.7 Asignments and expressions .. 16

5.7.1 Arithmetic Expression... 16
5.7.2 Logical Expression.. 17
5.7.3 String Expression .. 18

5.8 Conditional Execution.. 19
5.9 Popup Boxes... 23
5.10 Cycles ... 24
5.11 Using events to trigger script execution.. 27
5.12 Handling errors... 29
References .. 30

JavaScript 4

Chapter 5 JavaScript

5.1 JavaScript – An introduction

JavaScript is a scripting language that gives HTML designers a programming tool and

that can be used for easy management of user interface: it can put dynamic text into a HTML
page, it can make the page react to events or it can create and easy manipulate cookies. A
JavaScript inserted in the HTML document allows a local recognition and processing (that
means at client level) of the events generated by the user such as those generated when the
user scans the document or for management of fill-in forms, for example, we must recuperate
the information referencing the client (name, address, payment etc). By inserting a JavaScript
in the HTML page we can validate the data filled by the client (for example we can validate
the Credit Card Account, solvability, transactions history, etc) before it is submitted to the
server.

JavaScript allows restructuring an entire HTML document for which we can add,

remove, change, or reorder items on a page. In order to change anything on a page, JavaScript
needs access to all elements in the HTML document. This access, along with methods and
properties to add, move, change, or remove HTML elements, is given through the Document
Object Model (DOM).

In 1998, W3C published the Level 1 DOM specification. This specification allowed access to
and manipulation of every single element in an HTML page. All browsers have implemented
this recommendation, and therefore, incompatibility problems in the DOM have almost
disappeared. The DOM can be used by JavaScript to read and change HTML, XHTML, and
XML documents. The DOM is separated into different parts (Core, XML, and HTML) and
different levels (DOM Level 1/2/3):

• Core DOM - defines a standard set of objects for any structured document;
• XML DOM - defines a standard set of objects for XML documents;
• HTML DOM - defines a standard set of objects for HTML documents.

Every object can have his own Collections, Attributes (Properties) and Methods. Table #.1
shows the JavaScript objects and table #.2 shows the HTML DOM objects.

Table #.1 The JavaScript objects

Table #.2 HTML DOM objects
Object Description
Document Represents the entire HTML document and can be used to access all

elements in a page
Anchor Represents an <a> element

Object Description
Window The top level object in the JavaScript hierarchy. The Window object represents

a browser window. A Window object is created automatically with every
instance of a <body> or <frameset> tag

Navigator Contains information about the client's browser
Screen Contains information about the client's display screen
History Contains the visited URLs in the browser window
Location Contains information about the current URL

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 5

Area Represents an <area> element inside an image-map
Base Represents a <base> element
Body Represents the <body> element
Button Represents a <button> element
Event Represents the state of an event
Form Represents a <form> element
Frame Represents a <frame> element
Frameset Represents a <frameset> element
Iframe Represents an <iframe> element
Image Represents an element
Input button Represents a button in an HTML form
Input checkbox Represents a checkbox in an HTML form
Input file Represents a fileupload in an HTML form
Input hidden Represents a hidden field in an HTML form
Input password Represents a password field in an HTML form
Input radio Represents a radio button in an HTML form
Input reset Represents a reset button in an HTML form
Input submit Represents a submit button in an HTML form
Input text Represents a text-input field in an HTML form
Link Represents a <link> element
Meta Represents a <meta> element
Option Represents an <option> element
Select Represents a selection list in an HTML form
Style Represents an individual style statement
Table Represents a <table> element
TableData Represents a <td> element
TableRow Represents a <tr> element
Textarea Represents a <textarea> element

JavaScript is hardware and software platform independent. Within a JavaScript
inserted in the HTML page we can validate the data supplied by the client (for example, to
validate the card account, financial availability, history regarding previous transactions etc.).

For an inserted JavaScript the <script type="text/javascript"> and </script> tags tells
where the JavaScript starts and ends:

<html>
<body>
<script type="text/javascript">
<!--
... // put here the script body
//-->
</script>
</body>
</html>

The properties innerText and innerHTML allow us to access the contents - the code -

contained in an object. By manipulating the innerText and innerHTML properties, we can
change, dynamically, the text on a page (without reloading the page). For example, given a
paragraph whose id = "sampleparagraph", its innerText and innerHTML may be accessed via:

document.getElementById('sampleparagraph').innerHTML – this is interpreted as HTML

document.getElementById('sampleparagraph').innerText – this is interpreted as text

If the content of sampleparagraph is “ inner text</>” then:

JavaScript 6

- innerText would display as inner text
- innerHTML would display as inner text.

Figure 3.1 shows a HTML form containing a VBScript and a JavaScript.

Figure 3.1 A Java Script Example

<html>
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>New Page 2</title>
<script type="text/javascript" language="javascript">
 <!--
 function calc(a, b){ return (a*b);}
 // -->
</script>
<script id=clientEventHandlersVBS language=vbscript>
<!--
Sub Validate_onclick
 document.write("You Type:"+cstr(text1.value)+":"+cstr(text2.value))
End Sub
-->
</script>
</head>
<body>
 <script type="text/javascript" language="javascript">
 var welcmess="Welcome to scripts:";
 document.write(welcmess)
 </script>
 <p></p> First Number: <INPUT type="text" ID=Text1
value="0" name="text1" size="20">
 <p></p> Second Number: <INPUT type="text" ID=Text2 value="0" name="text2"
size="20">
 <p></p> <p><INPUT type="button" value="Show" id="Validate"></p>
</body>
</html>

The Style object represents an individual style statement that can be think as an inline

style declaration. The Style object can be accessed from the document or from the elements to
which that style is applied. For example, given a form whose id = "form1", its styles may be
accessed via:

document.getElementById('form1').style.property

where property is one of the many style properties available to a given element. Table #.7
shows some common style properties that we can manipulate.
Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 7

Table #.7 Style properties
Property Description
style.background Sets or retrieves the background picture tiled behind the text

and graphics in the object.
style.backgroundAttachment Sets or retrieves how the background image is attached to

the object within the document.
style.backgroundColor Sets or retrieves the color behind the content of the object.
style.backgroundImage Sets or retrieves the background image of the object.
style.border Sets or retrieves the width of the border to draw around the

object.
style.borderBottom Sets or retrieves the properties of the bottom border of the

object
style.borderBottomColor Sets or retrieves the color of the bottom border of the object.
style.borderBottomStyle Sets or retrieves the style of the bottom border of the object.
style.borderBottomWidth Sets or retrieves the width of the bottom border of the object.
style.borderCollapse Sets or retrieves a value that indicates whether the row and

cell borders of a table are joined in a single border or
detached as in standard HTML.

style.borderColor Sets or retrieves the border color of the object.
style.borderLeft Sets or retrieves the properties of the left border of the object
style.borderLeftColor Sets or retrieves the color of the left border of the object.
style.borderLeftStyle Sets or retrieves the style of the left border of the object
style.borderLeftWidth Sets or retrieves the width of the left border of the object.
style.borderRight Sets or retrieves the properties of the right border of the

object.
style.borderRightColor Sets or retrieves the color of the right border of the object.
style.borderRightStyle Sets or retrieves the style of the right border of the object.
style.borderRightWidth Sets or retrieves the width of the right border of the object.
style.borderStyle Sets or retrieves the style of the left, right, top, and bottom

borders of the object
style.borderTop Sets or retrieves the properties of the top border of the

object.
style.borderTopColor Sets or retrieves the color of the top border of the object.
style.borderTopStyle Sets or retrieves the style of the top border of the object.
style. borderTopWidth Sets or retrieves the width of the top border of the object.
style.borderWidth Sets or retrieves the width of the left, right, top, and bottom

borders of the object.
style.bottomMargin Sets or retrieves the bottom margin of the entire body of the

page.
style.color Sets or retrieves the color of the text of the object
style.font Sets or retrieves a combination of separate font properties of

the object. Alternatively, sets or retrieves one or more of six
user-preference fonts.

style.fontFamily Sets or retrieves the name of the font used for text in the
object.

style.fontSize Sets or retrieves a value that indicates the font size used for
text in the object.

style.fontStyle Sets or retrieves the font style of the object as italic, normal,
or oblique.

style.fontVariant Sets or retrieves whether the text of the object is in small
capital letters.

style.fontWeight Sets or retrieves the weight of the font of the object
style.margin Sets or retrieves the width of the top, right, bottom, and left

margins of the object.
style.marginBottom Sets or retrieves the height of the bottom margin of the

object.
style.marginHeight Sets or retrieves the top and bottom margin heights before

displaying the text in a frame.

JavaScript 8

style.marginLeft Sets or retrieves the width of the left margin of the object.
style.marginRight Sets or retrieves the width of the right margin of the object.
style.marginTop Sets or retrieves the height of the top margin of the object.
style.marginWidth Sets or retrieves the left and right margin widths before

displaying the text in a frame.
style.padding Sets or retrieves the amount of space to insert between the

object and its margin or, if there is a border, between the
object and its border

style.paddingBottom Sets or retrieves the amount of space to insert between the
bottom border of the object and the content.

style.paddingLeft

Sets or retrieves the amount of space to insert between the
left border of the object and the content.

style.paddingRight

Sets or retrieves the amount of space to insert between the
right border of the object and the content.

style.paddingTop Sets or retrieves the amount of space to insert between the
top border of the object and the content.

style.position Sets or retrieves the type of positioning used for the object.
style.textAlign Sets or retrieves whether the text in the object is left-aligned,

right-aligned, centered, or justified.
style.textDecoration Sets or retrieves a value that indicates whether the text in

the object has blink, line-through, overline, or underline
decorations.

style.textIndent Sets or retrieves the indentation of the first line of text in the
object.

style.topMargin Sets or retrieves the margin for the top of the page.
style.vAlign Sets or retrieves how text and other content are vertically

aligned within the object that contains them.
style.visibility Sets or retrieves whether the content of the object is

displayed.
style.zIndex Sets or retrieves the stacking order of positioned objects.

The JavaScript sentences involving text strings can be brake up within the text string

by using the \ (backslash) character.
The multiline comments can be defined between /* and */; the one line or the inline

comments can be defined by using // (two slashes). The extraspace is ignored and the
sentences are case sensitive. The ; (semicolon) ending sentence character is optional for
sentences defined alone on a line and compulsory for separating the commnds defined in the
same line (generally the inline scripts).

5.2 Using and placing JavaScripts in a HTML page

In the following paragraphs are introduced some examples of using (and placing)
JavaScripts in a HTML page.

5.2.1 JavaScript in the body of the HTML file

Java script in the body of the HTML page will be executed when the page loads.
Generally, the scripts in the body, will generate the content of the page.
Example:

<html>
 <head>
 <title>
 Page containing JavaScript
 </title>
 </head>
 <body>

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 9

 <script type="text/javascript">
 document.write("This text is displayed by a JavaScript!")
 </script>
 </body>
</html>

Comments:
The tag <script> have the attribute „type”, that specifies the script type (JavaScript in

our case). This script composed by a single command that displays inside the page the
text: "This text is displayed by a JavaScript!". If you want include many commands on
the same line this must be separated by the ”;” (semi colon) character.

The concatenation of text string is realized by using the + character, for example the
expression "This text is " + "concatenated." will produce the string "This text is
concatenated."

The „/” have a special meaning for the HTML language and consequentely when we
want display the slash character itself we must precede (prefix) this by a „\” (backslash),
as illustrated in this example:

document.write("<i>"+"The Operator + is Concatention!"+"<\/i>")
If the script is included in a comment tag (<!--) then the browsers that do not „know”

(interpret) JavaScript will not display in the page the script text (script source), as shown
in the folowing sample:

<!--
document.write("<i>"+"This text is displayed by a JavaScript!"+"<\/i>")
//-->

The browsers that know JavaScript will process the script, even this included in a

comment line.
The string „//”, comment in JavaScript, tell to the browser do not process the line „--

>”. We can not use the sintax „//<!--”, because a browser that do not interpret JavaScript
will display that string „//”.

5.2.2 JavaScript in heading

If we want be shure that the script executes before displaying any element in the page
we can include this in the heading part of the HTML page (file). The JavaScript in the
head section will be executed when called, or when an event is triggered.
Example:

<html>
 <head>
 <title>
 Page with JavaScript
 </title>
 <script type="text/javascript">
 document.write("This text is displayed by a JavaScript!")
 </script>
 </head>
 <body>
 <P> This text must appear in the page after the execution of the Javascript.
 </body>
</html>
The number of scripts placed in the head section and in the body of a HTML page is

unlimited.

JavaScript 10

5.2.3 External JavaScripts

A JavaScript can be stored into an external script file from where we can use in many
Web pages. In that way the script is written only once and in every HTML file we want
use is enough to invoke the file containing the script. The stored script cannot contain the
tag <script> or his pair </script>.

The steps followed when using externaly stored scripts are:
1. The creation of the external file containing the script lines, for example the line:
document.write("Text from an external stored script.")
2. The file is saved with the wanted name and the extension js (java script), for
example we name the file scriptex.js
3. In the HTML pages we want include the stored script file is added the following
script:

<script type="text/javascript" src="scriptex.js">
</script>

The „src” attribute of the tag <script> allows specifying the file containing the script we
want execute.

 5.3 Defining and using variables

JavaScript can contain variable definitions and references to that variables. The
variables can be used to store values and the references to that values can be done by
referencing the name of the variable. The lifetime of variables can be:

- for variables declared within a function - can only be accessed within the function;

they created when encountered their declaration as the function progreses and
destroyed when exiting; they called local variables and you can use the same name in
diffrent functions;

- for variables declared outside a function – can be accessed anywhere in the page; the

name must be unique at that level; the lifetime of these variables starts when they are
declared, and ends when the page is closed.

The variable declaration can include an assignment and can be done using one of
sentences:

var variableName=somevalue
or
variableName=somevalue

In the following example, on define a variable called „mess” that is initialized with the
value „This text contained by the variable called mess”, and later on referenced in a write
sentence:

<html>
 <head>
 <title>
 Page with JavaScript
 </title>
 </head>
 <body>
 <script type="text/javascript">
 <!--
 var mess= " This text contained by the variable called mess"

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 11

 document.write("<i>"+mess+"<\/i>")
 //-->
 </script>
 </body>
</html>

The variables, functions and, objects names are case-sensitive and must begin with a letter
or an _ (underscore) character.

5.4 Methods

JavaScript is an object based programming language and uses objects (as shown in
tables #.1 and #.2). It has many built-in objects such as Area, Image, Date, Window, and
Document, and allow also user defining his own objects. In the following table some methods
for document and window explained:

Method Explanation-Example
document.write(”msg”) Displays the message „msg” in the page containing the

script
Example:
1) displaying text in a page:
document.write("This text will be displayed in the page")
2) displaying attributes of a page, such as title and URL:
<script type="text/javascript">
document.write(document.title+”:”+document.URL)
</script>
</body>
*) The formating of the message to be displayed by write and
alert methods or other intrinsic functions that manipulate
strings is realized by intermediate of escape sequences.

window.alert("msg") Displays a dialog box (alert box) containing the message
„msg” and the OK button.
Example:
function display_alert()
{
 alert("The message formatting is ensured" + '\n' + "by using a
lot of so called \‘escape sequences\’")
}

window.prompt("msg","d
efault")

Displays a dialog box prompting the user for input and
confirm/cancel the dialog.
Example:
function display_prompt()
{
 var name=prompt("Type your name here","")
 if (name!=null && name!="")
 {
 document.write("You typed " + name + "! It is that correct
?")
 }
}

window.confirm("msg") Displays a dialog box with a message, a Cancel, and an
OK button (similar to MsgBox,).

JavaScript 12

Example:
function display_confirm()
{
 var buttonpressed=confirm("Press a button")
 if (buttonpressed ==true)
 {
 document.write("You pressed the OK button!")
 }
 else
 {
 document.write("You pressed the Cancel button!")
 }
}

window.open("URL",
"name_of_new_window",
"specifications")

Opens a new browser window for the page indicated by
the URL argument. The window can be referenced by the
name “name_of_new_window” and can be customized by
the values supplied by the “specifications” argument.
Example:
<html>
<head>
<script type="text/javascript">
function open_win_ase()
{
window.open("http://www.ase.ro","_blank","toolbar=yes,
location=yes, directories=no, status=no, menubar=yes,
scrollbars=yes, resizable=no, copyhistory=yes, width=400,
height=300")
}
function open_win_avrams()
{
window.open("http://www.aavrams.ro","_blank","toolbar=yes,
location=yes, directories=no, status=no, menubar=yes,
scrollbars=yes, resizable=no, copyhistory=yes, width=400,
height=300")
}
</script>
</head>
<body>
<form>
<input type="button" value="Faculty"
onclick="open_win_ase()">
<input type="button" value="Course Notes"
onclick="open_win_avrams()">
</form>
</body>
</html>

*) Common Escape Sequences for text display formatting are represented by:
Ampersand \&
Double quote \"
Single quote \'
Newline \n
Form feed \f
Carriage return \r
Backslash \\
Backspace \b
Tab \t

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 13

5.5 Document Object Model (DOM)

The Document Object Model defines HTML documents as a collection of objects and
provides access to every element, identified uniquely by intermediate of an id attribute, in a
document. Any element may be accessed (by using the method getElementById) and
modified by a snippet of JavaScript. The Window object is the top level object in the
JavaScript hierarchy (it represents a browser window). A Window object is created
automatically with every instance of a <body> or <frameset> tag. You can see and exercises
the various elements of DOM HTML by following the link:
http://www.w3schools.com/htmldom/dom_examples.asp

Examples:

a) This sample displays the message „This is first paragraph! Click, and see”. If you click

somewhere in the displayed text it displays:
 „The background is: the current color name
Will be changed in Yellow!”:
<html>
<head>
<title>Using DOM</title>
<script language="javascript">
<!--
 function xalert()
 {
 var x=document.getElementById("par1");
 x.style.background="red";
 alert("The background is:" + x.style.background+"\n Will be changed in Yellow!")
 if(x.style.background=="red")
 {
 x.style.background="yellow";
 }
 else
 {
 x.style.background="red";
 }
 }
-->
</script>
</head>
<body>
 <p id="par1" onclick="xalert()" >This is first paragraph! Click, and see</p>
</body>
</html>

b) This sample uses innerHTML to change dynamically the header identified by „chgheader”:
<html>
<head>
<script type="text/javascript">
function getValue()
{
var x=document.getElementById("myHeader")
alert(x.innerHTML)
}
function chgval()
{
 document.getElementById("chgheader").innerHTML="My Header (Changed)"
}
</script>

http://www.w3schools.com/htmldom/dom_examples.asp

JavaScript 14

</head>
<body>

<h1 id="myHeader" onclick="getValue()">This is first header</h1>
<p>Click on the header to alert its value</p>
<h2 id="chgheader" onclick="chgval()">This is the second header</h2>
<p>Click on the header to change its value</p>

</body>
</html>

5.6 Using and Defining Function

A function contains code (a set of statements) which is executed when triggered by an

event or a call to that function. In JavaScript is possible to use the Java language intrinsic
functions or user defined functions (must be defined before any usage).

In the case of user defined functions is preferable that the definition is made in the
head section of the HTML page to be shure (or to ensure) in that way they loaded before
calling. This required because the browser start processing the HTML page before completly
downloading this from server. You may call a function from anywhere within a page (or even
from other pages if the function is embeded in an external script).

The general syntax of a function is:
function function_name([argument1,argument2,etc])
{
 some_statements
 [return expression]
}
where:
function_name is the name the function you want have;
argument1,argument2,… the name for the function parameters if it has. Is allowed do
not pass any parameter to the function;
some_statements generally variable declarations and executables statements that
describes the steps of the algorithm you model. They define together with the return
statement (if present) the body of the function;
expression is the expression whose evaluation will represent the returned value. A
function can return (the sentence return must be present in the body) a value or not
(the return statement is not appearing between those of the function’s body);
A function can be invoked in one of the ways :
- without arguments:
 function_name()
- or with arguments:
 function_name(argument1,argument2,etc)

A function is executed when is called. The function can be called within a JavaScript
block, via an event handler (inside an HTML tag) or via a href link.

In the following example is called the function „alert” (a standard function of the
JavaScript language) with the argument „mess” (the variabe used in the previous example)
and that determine the display of an alert box in which the content of variable „mess”
displayed.

Example:
The call of an JavaScript intrinsic function.
<html>
 <head>
 <title>

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 15

 Page with JavaScript
 </title>
 </head>
 <body>
 <script type="text/javascript">
 <!--
 var mess= " This text contained by the variable called mess"
 document.write("<i>"+mess+"<\/i>") // a method of the document object
 alert(mess) // the intrinsic function invoked
 //-->
 </script>
 </body>
</html>

Example:
The call of an user defined function.
<html>
 <head>
 <title>
 Page with JavaScript
 </title>
 <script type="text/javascript">
 <!--
 function suma(a,b)
 {
 rezult=a+b
 return rezult
 }
 //-->
 </script>
 </head>
 <body>
 <script type="text/javascript">
 <!--
 var mess= " This text contained by the variable called mess"
 document.write("<i>"+mess+"<\/i>")
 alert(mess)
 alert(suma(“This text is a ”,”<String Concatenation>”))
 document.write("This digit is the result of adding 2 to 7 by using the user defined function
suma:"+suma(2,7))
 //-->
 </script>
 </body>
</html>

Example :
In this example the JavaScript defined in the head part of the page and in the body part
in a href tag.
<html>
<head>
<title>A Page with scripts</title>
<script type="text/javascript">
 function chgbgcolor()
 {
 document.bgColor="green"
 }
 function chcolor()
 {
 document.bgColor="orange"
 }

JavaScript 16

</script>
<script id=clientEventHandlersJS language=javascript>
<!—
function window_onload() {
 document.bgcolor="orange"
}
//-->
</script>
<script language=javascript for=window event=onload>
<!—
return window_onload()
//-->
</script>
</head>
<body>
<p>The page not empty </>
This is a script in
href</p>
<h1 id="header1" onclick="chgbgcolor()"> IT4B: </h1>
<h2 id="header2">Errata</h2>
</body>
</html>

5.7 Asignments and expressions

The general syntax for assignment is:

variable = expression
The interpretation of this is: the variable before the assignment operator is assigned a

value of the expression after it, and in the process, the previous value of variable is destroyed.
An expression can be an arithmetic expression, a logical expression or expression on
character string. It can be a variable, a constant, a literal, or a combination of these connected
by appropriate operators.
 An assignment statement stores a literal value or a computational result in a variable
and is used to perform most arithmetic operation in a program.

5.7.1 Arithmetic Expression

An arithmetic expression uses the syntax:

 <operand1><arithmetic_operator><operand2>
where:
- <operand1>,<operand2> can be numeric variables, constants or arithmetic expressions (or
calls to functions that returns numeric values)
- arithmetic_operator (binary operators) is one of those shown in table #.3.

Table #.3 Arithmetic Operators

Operator Description Example
Suppose x=2

+ Addition x+2 = 4
- Subtraction 5-x = 3
* Multiplication x*5 = 10
/ Division 9/3 = 3; 5/2 = 2.5
% Modulus (division remainder) 5%2 = 1; x%2 = 0; 10%5 = 0
++ Increment By One*) x++ = 3
-- Decrement By One*) x-- = 1

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 17

*) The increment and decrement operators can either be used as a pre- or a post-
operator:

Post-Increment: the line of code is
executed as then the increment/decrement
is performed.
y = x++ is equivalent to the sequence:
y = x
x = x + 1

Pre-Increment: the increment or decrement is
performed before whatever other operations
are present within the given line of code.
y = ++x is equivalent to the sequence:
x = x + 1
y = x

For arithmetic expressions the assignment operator can be combined with the arithmetic ones
to define compact expressions as shown in the table #.4.

Table #.4 Assignment Operators

Operator Example Is The Same As
= x = y x = y
+= x += y

x+=y-12
x = x + y
x=x+(y-12)

-= x-=y
x -= y +12

x=x-y
x = x - (y + 12)

= x=y
x *= 3 + y

x=x*y
x = x * (3 + y)

/= x /= y
x/=y+2

x = x / y
x=x/(y+2)

%= x %= y
x%=y+2

x = x % y
x=x%(y+2)

5.7.2 Logical Expression

A logical expression can be:

• simple, with the general syntax:

 <variable>[<relation_operator><variable>]
 or
 <variable>[<relation_operator><constant>]
 <relation_operator>::=<|<=|>|>=|==|!=

Table #.5 shows and explains the comparison operators.

 • complex, with the general syntax:
 e1 && e2 - logical and;
 e1 || e2 - logical or;
 ! e1 - logical not.
 <logical_expression1><logical_operator><logical_expression2>
 where the logical_operator can be:
 && (and; two ampersand character), || (or; two vertical bar character) as binary
operators (connectives);
 ! (not) as unary operator.

The precedence of evaluation of logical operators is Not, And, Or. The logical
operator together with the truth table defining the way they operate and usage examples are
shown in table #.6.

JavaScript 18

Table #.5 Comparison Operators

Operator Description Example
Suppose x=2

== is equal to x == 3 returns false
=== Is equal to (checks for both value

and data type)
y=”2”
x==y returns true
x===y return false (x integer; y string)

!= is not equal x != 3 returns true
> is greater than x > 3 returns false
< is less than x < 3 returns true
>= is greater than or equal to x >= 3 returns false
<= is less than or equal to x <= 3 returns true

Table #.6 Logical Operators

Operator Description Example
Suppose x=2; y=3

x y and
T T T
T F F
F T F

&&

F F F

(x < 9 && y > 1) returns true
(x < 9 && y < 1) returns false
(x > 9 && y > 1) returns false
(x > 9 && y < 1) returns false

x y or
T T T
T F F
F T F

||

F F F

(x < 9 || y > 1) returns true
(x < 9 || y < 1) returns true
(x > 9 || y > 1) returns true
(x > 9 || y < 1) returns false

x not
F T

!

T F

!(x == y) returns true
!(x > y) returns false

5.7.3 String Expression

An expression on character string can be built (in Java but not only) using:
- the concatenation operator: +
- intrinsic functions for extracting substrings from a string variable or string constant

such as:
 Right(string,number_of_characters) - extracting substring from the end
 Left(string,number_of_characters) - extracting substring from the beginning
- functions that manipulate strings:
 Cstr(expression) – convert the expression in a character string;
 Lcase(string_expression) – convert the string in lower case;
 Ltrim(string), Rtrim(string), Trim(string) – eliminates the spaces (trailing) from left
(leading blanks), right and, respectively left-right;
 Str(number) – converts number in string;
 Ucase(string) – converts string to uppercase.

The code sequence below is string concatenation by using the concatenation operator +
example.

text1 = "Faculty of"
text2 = "Business Administration"
text3 = text1 +” “+ text2

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 19

The variable text3 now contains the string "Faculty of Business Administration". The
concatenation with the space character “ “ is realized to separate the strings (generally stored
with no trailing blanks).

5.8 Conditional Execution

A script can include branches (If...Then...Else...) alowing the definition of conditional

executions similarly to the example in the following sequence:

if (navigator.appName.indexOf("Internet Explorer")!=-1)
{
 alert("The used Navigator is Internet Explorer!")
}
else
{
 alert(("The used Navigator is not Internet Explorer!")
}

These code sequence will display an alert box containing a diffrent text depending on

the type of the used browser in which the page displayed. The conditional expression of
the IF sentence searches for the text „Internet Explorer” in the name of the browser
(navigator) application. If this text do not appears in the browser name then the function
„indexOf” returns the value „-1”. The condition evaluates to True only if the return of that
function is not „-1”. The JavaScript IF sentence, „switch” sentence or the conditional
operator „?” can be used to define the conditional execution.
Decision sentences. The decision sentences are used to model the decision structure and
that is used for choosing an alternative (an operation or block of operations) from two
possible alternatives. Algorithm steps that select from a choice of actions are called
decision steps.

If … Then … Else …

if (condition)

operation1;
else

operation2;
If one of operations includes a sentences sequence then this sequence will be included in a
sentence block:
{

operationi;
}

 The decision block can be expressed in a natural language as:
- evaluate the expression that defines the logical condition <condition>;
- If the result of evaluation is True

Then execute operation1
Else execute operation2;

- continue the execution with the next step in the flow

If … Then …

JavaScript 20

if (condition) operation;

if (condition) {

operations;
}

if...else if....else statement

This statement allows to select one of many blocks of code to be executed .
if (condition1)
{
code to be executed if condition1 is true
}
else if (condition2)
{
code to be executed if condition2 is true
}
else
{
code to be executed if condition1 and condition2 are not true
}
 The logical condition <conditionx> is a logical expression that will be evaluated either
to True or either to False. The logical conditions can be simple or complex logical
conditions.

A simple logical condition has the general syntax:
<variable> [<relation_operator ><variable>]
or
<variable> [<relation_operator ><constant>]

The relation_operator can be one of:

Relation Operator Interpretation
< Less than. Example: delta < 0

<= Less than or equal. Example: delta <= 0
> Greater than. Example: delta > 0

>= Greater than or equal. Example: delta >= 0
= = Equal to. Example: a == 0
!= Not equal. Example: a!=0

The simple logical conditions will be connected by the AND, OR, and NOT
logical operators to form complex conditions. The logical operators are evaluated in the
order NOT, AND, and OR. The change of the natural order of evaluation can be done by
using parenthesis in the same way for arithmetic expressions.
Example:
<html> <head> <title>New Page 1</title> </head><body>
<script type="text/javascript">
// If the time is less than 10,write a "Good morning" greeting
// If time between 10 and 16 write a "Good day" greeting
// Otherwise "Hello world"
// Write the hour and If time <12 write AM else write PM
var computerdate = new Date()
var time = computerdate.getHours()

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 21

if (time<10)
{
document.write("Good morning! Now is " +time+((time<12)?' AM':' PM')+"")
}
else if (time>10 && time<16)
{
document.write("Good day! Now is " +time+((time<12)?' AM':' PM')+"")
}
else
{
document.write("Hello World! Now is " +time+((time<12)?' AM':' PM')+"")
}
</script> </body>
</html>

Switch. Execute one of several groups of statements depending on the value of an
expression (called selector). The case structure (and statement) can is especially used
when selection is based on the value of a single variable or a simple expression (called the
case selector).

switch (expression_int) {

case constant_expression1:
operations1

case constant_expression2:
operations 2. . .

default:
operations n

}
- expression_int is an expression that must produced an integral value (int);
- constant_expressioni must be a constant expression;
- the label default: can be used only once.
The expression_int is also called the selector of instruction Case.
- if the value of the selector don’t fit to a constant the operations specified on branch
Default (otherwise) will be executed;
- the values of constants must be unique for a switch sentence.
Example:
The sequence below uses the switch statement to find out the Romanian name for the day
of the week of a date.

<HTML>
<HEAD>
<meta name=vs_defaultClientScript content="JavaScript">
<TITLE></TITLE>
<META NAME="GENERATOR" Content="Microsoft Visual Studio">
<META HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8">
<script type="text/javascript">
/* The sequence will write the name of the day in romanian
 (Sunday=0, Monday=1, Tuesday=2, etc)
*/
function RODay(aDayNumber)
{
 switch (aDayNumber)
 {
 case 0:
 return "Duminica"
 case 1:

JavaScript 22

 return "Luni"
 case 2:
 return "Marti"
 case 3:
 return "Miercuri"
 case 4:
 return "Joi"
 case 5:
 return "Vineri"
 case 6:
 return "Sambata"
 default:
 alert("What day is it? \n The computer is virused or hardware damaged !")
 return "What day is it? \n The computer is virused or hardware damaged !"
 }
 }
</script>
<script id=clientEventHandlersJS language=javascript>
<!--

function Button1_onclick() {
 var i=0
 var datadeazi=new Date()
 var ziua=datadeazi.getDay()
 for (i=ziua;ziua<=6;ziua++){
 document.write(ziua+": " + RODay(ziua)+"
")
 }
}

//-->
</script>
<script language=javascript for=Button1 event=onclick>
<!--

return Button1_onclick()
//-->
</script>
</HEAD>
<BODY>
<p>This page contains a Java Script exploiting the switch sentence.</p>
<p>
 <input id=Button1 type=button value="Press This"></p>

</BODY>
</HTML>

Conditional Operator (?)
The conditional operator has the syntax:
 (conditional_expression) ? true_case_expression: false_case_expression
where:
<conditional_expression> is a logical expression that will be evaluated either to True or
either to False.
Is a very good idea to include the expression in parenthesis (to enforce his evaluation).
<true_case_expression> is the expression whose evaluation will be returned if the
conditional expression evaluates to True
<false_case_expression> is the expression whose evaluation will be returned if the
conditional expression evaluates to False.
Example:

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 23

<HTML>
<HEAD>
<meta name=vs_defaultClientScript content="JavaScript">
<TITLE></TITLE>
<META NAME="GENERATOR" Content="Microsoft Visual Studio">
<META HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8">
</HEAD>
<BODY>

<script language=javascript>
 var TotalBalance, savings=300
 TotalBalance =(savings==0) ? 0:(savings*1.03)
 // TotalBalance is now 309
 document.write("Total Balance is now: " + TotalBalance)
</script>
</BODY>
</HTML>

5.9 Popup Boxes

In JavaScript we can create three kinds of popup boxes by invoking the associated

intrinsic function. This functions are:
Function Description
alert(”text_to_be_displayed”) Displays an alert box containing the message passed in

argument and an OK button. This call produces the box:

confirm(”text_to_be_displayed”) Displays a box containing the message passed in

argument provided with an OK (confirm) and Cancel
(denny) button. This call produces the box:

prompt(”text_to_be_displayed”,
”defaultvalue”)

Displays an input dialog box provided with a text box to
fill data and an OK (return the value typed to the caller)
and Cancel (return a Null value to caller). This call
produces the box:

JavaScript 24

5.10 Cycles

The repeating structure repeats a block of statements while a condition is True or Until

a condition becomes True. The repetition of steps in a program is called a loop.
The repeated execution of a sequence of instructions (loop) can be done by using the

looping sentences „while” , „do...while” and, for.
Example:

<html>
<head>
<title>
 Page containing loop
</title>
</head>
<body>
<script type="text/javascript">
<!--
 for (i=0; i<5; i++)
 {
 document.write("Step i: "+i+"
")
 }
//-->
</script>
</body>
</html>

In this example the values of i are written into the page „Step i:the_vale_of_i” from the
value 0 to 4.
a) The condition evaluated first
- first syntax:
 while (condition) operation;

- second syntax:
 while (condition)

{
operations;
[continue;]
[break;]

}
where:
- continue jump to the condition evaluation;
- break interrupt the cycle and transfer the execution to the sentence that follows to the
end block marker }

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 25

Note. The ; character ending sentences is optional if the sentence is written alone on the line.
It is necessary if you define mode sentences on the same line.

The executions of such blocks follow the scenario (while): the condition is

evaluated and if the condition evaluates to:
• True then executes the block of statements;
• False then end the execution of the cycle (Loop) and continue the execution of
the program.
If for the first time the condition is False the sentence block is simply skipped.

b) the condition evaluated after

do

{
operations;

} while conditions
In this case the operation is executed first and then the condition is evaluated and can be
described as:

- the operations are executed;
- the condition is evaluated;
- if the result of the evaluation of the condition is False then loop to execute again the
operations;
- if the evaluation of the condition is True then continue the execution of the program
(and close the loop).

c) counted loop

for (expression1; expression2; expression3) operation;

If many operations desired in the cycle they must be included as block;
expression1 – is an expression that initializes the counter, having the general syntax
counter=startvalue;
expression2 – contains the definition for ending the loop, generally a logical condition of
the form counter<=endvalue;
expression3 – is an expression to increment or decrement the value for the counter, for
example counter=counter+increment.

The cycle can be unconditionally stopped by using the instruction break and can be
unconditionally restarted by using the sentence: continue.
Example:
for (counter = iv; fv; s) {operations};

The execution of For sentence follows the scenario:
1. The value iv is assigned to the variable counter;
2. The value of variable counter is compared with the end value fv (the value can

be determined by evaluating an expression);
3. The operations are executed;
4. The value of variable counter is incremented with the value step (1 if step not

specified);
5. Repeat the steps from 2 to 5.

JavaScript 26

Example :

Figure 3.# shows the usage of document object for accessing the forms collection and
displaying, as comma separated values, the attributes Name, Value and Type.
<html>

<head>
<title>A form and javascript</title>
</head>
<body>

<form method="POST" action="--WEBBOT-
SELF--">
 <!--webbot bot="SaveResults" u-
file="C:\Documents and Settings\Vio\My
Documents\My Webs_private\form_results.csv"
 s-format="TEXT/CSV" s-label-fields="TRUE" -->

This lines
printed into
page by the for
sequence in the
script

 <!-- This is the description of the form -->
 <p>First name:<input type="text"
name="FName" size="20"></p>
 <p>Last Name:<input type="text"
name="LName" size="20"></p>
 <p>Gender:<input type="radio" value="V1"
name="Male" checked>Male
 <input type="radio" name="Female" value="V2">Female</p>

Figure 3.1 Accessing HTML form
elements

 <p><input type="submit" value="Submit" name="B1">
 <input type="reset" value="Reset" name="B2"></p>

</form>

<script type="text/vbscript">
 document.write("Name, Value, Type "+"
")
</script>
<script type="text/javascript">
 for (i=0; i < document.forms[0].elements.length;i++)
 {
 document.write(document.forms[0].elements[i].name + ", ");
 //syntax below uses the name attribute of the form to access the form's elements
 document.write(document.forms[0].elements[i].value + ", ");
 document.write(document.forms[0].elements[i].type + "
");
 }
</script>
</body>

</html>

For … In statement
for (variable in object)
{

code to be executed
}

Example :
In this example is defined an array object called divisions and the first three elements
initialized. The for…in sentence will fill in the HTML document the lines initialized
in the array.
html>
<body>

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 27

<script type="text/javascript">

var x, nr

var divisions = new Array()
divisions[0] = "English"
divisions[1] = "French"
divisions[2] = "German"

for (x in divisions)
{
nr=x/1+1;
document.write(nr+": "+divisions[x] + "
")
}
</script>

</body>
</html>
that produces the output :
1: English
2: French
3: German

5.11 Using events to trigger script execution

Some events that can be associated with HTML pages are represented by the
following:

Event Occurs when...
onabort a user aborts page loading

onblur a user leaves an object

onchange a user changes the value of an object

onclick a user clicks on an object

ondblclick a user double-clicks on an object

onerror an error occurs

onfocus a user makes an object active

onkeydown a keyboard key is on its way down

onkeypress a keyboard key is pressed

onkeyup a keyboard key is released

onload a page is finished loading (in Netscape, this event
occurs during the loading of a page).

onmousedown a user presses a mouse-button

onmousemove a cursor moves on an object

onmouseover a cursor moves over an object

onmouseout a cursor moves off an object

onmouseup a user releases a mouse-button

onreset a user resets a form

onselect a user selects content on a page

onsubmit a user submits a form

JavaScript 28

a user closes a page; a frequent usage is to deal
with cookies. onunload

The table below shows common usage of events:
Event Usage
onload,
onunload

The onload event is often used to check the visitor's browser type and
browser version, and load the proper version of the web page based
on the information. Both events frequently used to deal with cookies.

onfocus, onblur,
onchange

Generally used in combination with validation of form fields.

onsubmit Is used to validate All form fields before submission (is possible to deal with
logical validation involving more fields from the form).

onmouseover,
onmouseout

Generally used for creating “animated” buttons.

In the following example is shown an inline JavaScript code (without the tags <script>
and </script>). The web page contains a button whose property „Caption” has the value
„ASE”. When the event „onclick” occurs (when clicking the button) is called the function
„open” (member of „windows” functions gruop), having in arguments the arguments
required to open the ASE site home page in a window called internally „ase_home”.

Example:
<html>
<head>
<title>
 Command button link
</title>
</head>
<body>
 <form>
 <input type="button" value="ASE" onclick='window.open("http://www.ase.ro", "ase_home")'>
 </form>
</body>
</html>

Example:
<html>
<head>
<title>Pagina cu Cronometru </title>
<script type="text/javascript">

function startTime()
{
var today=new Date()
var h=today.getHours()
var m=today.getMinutes()
var s=today.getSeconds()
// add a zero in front of numbers<10
m=checkTime(m)
s=checkTime(s)
document.getElementById('txt').innerHTML=h+":"+m+":"+s
t=setTimeout('startTime()',500)
}

function checkTime(i)
{
if (i<10)
 {i="0" + i}

Prof. Univ. Dr. Vasile AVRAM

INFORMATICS: Internet Technologies for Business 29

 return i
}

</script>
</head>

<body onload="startTime()">
<div id="txt" align=right></div>
<script type="text/javascript">

var x, nr
var divisions = new Array()
divisions[0] = "English"
divisions[1] = "French"
divisions[2] = "German"
for (x in divisions)
{
nr=x/1+1;
document.write(nr+": "+divisions[x] + "
")
}

</script>

</body>
</html>

5.12 Handling errors

In JavaScript are two ways for catching errors in a Web page:
- by using the try…catch statement;
- by using the onerror event.

Try…catch
The code you want prevent harassing user by error messages is included between try sentence
and catch(err) sentence:
try
{
//Run some code here
}
catch(err)
{
//Handle errors here
}

Throw
Throw statement allows user to create an exception that can be catch and processed later on
by try..catch. The syntax is:
throw(exception)

onerror event
 The syntax for the onerror event and his associated error handler is:
Onerror=handleError

function handleError(msg, url, l)
{
// handle the error here
return true (success) or false (failure)
}

JavaScript 30

References

1. [AvDg03] Vasile Avram, Gheorghe
Dodescu

Informatics: Computer Hardware and
Programming in Visual Basic, Ed. Economică,
Bucureşti, 2003 (Chp. 1.6, 1.7, 1.8, 7.11.3 and
7.11.4)

2. [DgAv05] Gheorghe Dodescu, Vasile
Avram

Informatics: Operating Systems and Application
Software, Ed. Economică, Bucureşti, 2005 (Chp.
10.1, 10.2 and 10.3)

3. [BIS-TDM] Dave Chaffey, Paul Bocij,
Andrew Greasley, Simon
Hickie

Business Information Systems-Technology,
Development and Management for the e-
business, Prentice Hall, London, second edition,
2003

4. [BF01] Benjamin Faraggi Architectures marcandes et portails B to B, Ed.
DUNOD, Paris, 2001

5. [RFC 1630] T. Berners-Lee RFC 1630 - Universal Resource Identifiers in
WWW, Network Working Group, CERN, June
1994

[RFC3986] 6. T. Berners-Lee W3C/MIT,
R. Fielding Day Software,
L. Masinter Adobe Systems

Uniform Resource Identifier (URI): Generic
Syntax, January 2005

7. [KLJL] Kenneth C. Laudon, Jane P.
Laudon

Essentials of Management Information
Systems – Managing the Digital Firm, Prentice
Hall, fifth edition, 2003

8. [W3C] www.w3c.org World Wide Web Consortium, Web standards
collection

9. [MNSS] Todd Miller, Matthew L.
Nelson, Stella Ying Shen
and Michael J. Shaw

e-Business Management Models: A Services
Perspective and Case Studies, Revere Group

10. E-commerce business models http://www.iusmentis.com
http://www.iusmentis.com/business/ecommerce/businessmodels/

11. http://digitalenterprise.org/models/models.html Professor Michael Rappa, North Carolina
State University

Prof. Univ. Dr. Vasile AVRAM

http://www.iusmentis.com/
http://digitalenterprise.org/models/models.html

	
	Chapter 5 JavaScript
	5.1 JavaScript – An introduction
	5.2 Using and placing JavaScripts in a HTML page
	5.2.1 JavaScript in the body of the HTML file
	5.2.2 JavaScript in heading
	5.2.3 External JavaScripts

	 5.3 Defining and using variables
	5.4 Methods
	5.5 Document Object Model (DOM)
	5.6 Using and Defining Function
	5.7 Asignments and expressions
	5.7.1 Arithmetic Expression
	5.7.2 Logical Expression
	5.7.3 String Expression

	5.8 Conditional Execution
	5.9 Popup Boxes
	5.10 Cycles
	5.11 Using events to trigger script execution
	5.12 Handling errors
	References

